202 research outputs found

    Security risk modeling in smart grid critical infrastructures in the era of big data and artificial intelligence

    Get PDF
    Smart grids (SG) emerged as a response to the need to modernize the electricity grid. The current security tools are almost perfect when it comes to identifying and preventing known attacks in the smart grid. Still, unfortunately, they do not quite meet the requirements of advanced cybersecurity. Adequate protection against cyber threats requires a whole set of processes and tools. Therefore, a more flexible mechanism is needed to examine data sets holistically and detect otherwise unknown threats. This is possible with big modern data analyses based on deep learning, machine learning, and artificial intelligence. Machine learning, which can rely on adaptive baseline behavior models, effectively detects new, unknown attacks. Combined known and unknown data sets based on predictive analytics and machine intelligence will decisively change the security landscape. This paper identifies the trends, problems, and challenges of cybersecurity in smart grid critical infrastructures in big data and artificial intelligence. We present an overview of the SG with its architectures and functionalities and confirm how technology has configured the modern electricity grid. A qualitative risk assessment method is presented. The most significant contributions to the reliability, safety, and efficiency of the electrical network are described. We expose levels while proposing suitable security countermeasures. Finally, the smart grid’s cybersecurity risk assessment methods for supervisory control and data acquisition are presented

    Advanced laboratory testing methods using real-time simulation and hardware-in-the-loop techniques : a survey of smart grid international research facility network activities

    Get PDF
    The integration of smart grid technologies in interconnected power system networks presents multiple challenges for the power industry and the scientific community. To address these challenges, researchers are creating new methods for the validation of: control, interoperability, reliability of Internet of Things systems, distributed energy resources, modern power equipment for applications covering power system stability, operation, control, and cybersecurity. Novel methods for laboratory testing of electrical power systems incorporate novel simulation techniques spanning real-time simulation, Power Hardware-in-the-Loop, Controller Hardware-in-the-Loop, Power System-in-the-Loop, and co-simulation technologies. These methods directly support the acceleration of electrical systems and power electronics component research by validating technological solutions in high-fidelity environments. In this paper, members of the Survey of Smart Grid International Research Facility Network task on Advanced Laboratory Testing Methods present a review of methods, test procedures, studies, and experiences employing advanced laboratory techniques for validation of range of research and development prototypes and novel power system solutions

    New dispatching paradigm in power systems including EV charging stations and dispersed generation: A real test case

    Get PDF
    Electric Vehicles (EVs) are becoming one of the main answers to the decarbonization of the transport sector and Renewable Energy Sources (RES) to the decarbonization of the electricity production sector. Nevertheless, their impact on the electric grids cannot be neglected. New paradigms for the management of the grids where they are connected, which are typically distribution grids in Medium Voltage (MV) and Low Voltage (LV), are necessary. A reform of dispatching rules, including the management of distribution grids and the resources there connected, is in progress in Europe. In this paper, a new paradigm linked to the design of reform is proposed and then tested, in reference to a real distribution grid, operated by the main Italian Distribution System Operator (DSO), e-distribuzione. First, in reference to suitable future scenarios of spread of RES-based power plants and EVs charging stations (EVCS), using Power Flow (PF) models, a check of the operation of the distribution grid, in reference to the usual rules of management, is made. Second, a new dispatching model, involving DSO and the resources connected to its grids, is tested, using an Optimal Power Flow (OPF) algorithm. Results show that the new paradigm of dispatching can effectively be useful for preventing some operation problems of the distribution grids

    Reliability and energy costs analysis of a rural hybrid microgrid using measured data and battery dynamics: a case study in the coast of Perú

    Get PDF
    Hybrid microgrids constitute a promising solution for filling the electricity access gap that currently exists in rural areas; however, there is still relatively little information about their reliability and costs based on measured data in real working conditions. This article analyzes data obtained from the operation of a 9 kW hybrid microgrid in the fishermen’s cove of Laguna Grande, Paracas, in the Ica region of Perú, which has been running for 5 years. This microgrid has been equipped with data acquisition systems that measure and register wind speed, solar radiation, temperatures, and all the relevant electric parameters. Battery dynamics considerations are used to determine the depth of discharge in a real-time operative situation. The collected data are used to optimize the design using the specialized software HOMER, incorporating state-of-the-art technology and costs as a possible system upgrade. This work aims to contribute to better understanding the behavior of hybrid rural microgrids using data collected under field conditions, analyzing their reliability, costs, and corresponding sensitivity to battery size as well as solar and wind installed power, as a complement to a majority of studies based on simulations.Peer ReviewedPostprint (published version

    Hybrid Smart Transformer for Enhanced Power System Protection Against DC With Advanced Grid Support

    Get PDF
    The traditional grid is rapidly transforming into smart substations and grid assets incorporating advanced control equipment with enhanced functionalities and rapid self-healing features. The most important and strategic equipment in the substation is the transformer and is expected to perform a variety of functions beyond mere voltage conversion and isolation. While the concept of smart solid-state transformers (SSTs) is being widely recognized, their respective lifetime and reliability raise concerns, thus hampering the complete replacement of traditional transformers with SSTs. Under this scenario, introducing smart features in conventional transformers utilizing simple, cost-effective, and easy to install modules is a highly desired and logical solution. This dissertation is focused on the design and evaluation of a power electronics-based module integrated between the neutral of power transformers and substation ground. The proposed module transforms conventional transformers into hybrid smart transformers (HST). The HST enhances power system protection against DC flow in grid that could result from solar storms, high-elevation nuclear explosions, monopolar or ground return mode (GRM) operation of high-voltage direct current (HVDC) transmission and non-ideal switching in inverter-based resources (IBRs). The module also introduces a variety of advanced grid-support features in conventional transformers. These include voltage regulation, voltage and impedance balancing, harmonics isolation, power flow control and voltage ride through (VRT) capability for distributed energy resources (DERs) or grid connected IBRs. The dissertation also proposes and evaluates a hybrid bypass switch for HST module and associated transformer protection during high-voltage events at the module output, such as, ground faults, inrush currents, lightning and switching transients. The proposed strategy is evaluated on a scaled hardware prototype utilizing controller hardware-in-the-loop (C-HIL) and power hardware-in-the-loop (P-HIL) techniques. The dissertation also provides guidelines for field implementation and deployment of the proposed HST scheme. The device is proposed as an all-inclusive solution to multiple grid problems as it performs a variety of functions that are currently being performed through separate devices increasing efficiency and justifying its installation

    Advancements in Real-Time Simulation of Power and Energy Systems

    Get PDF
    Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics
    • …
    corecore