35 research outputs found

    Analytical characterization of inband and outband D2D Communications for network access

    Get PDF
    Mención Internacional en el título de doctorCooperative short-range communication schemes provide powerful tools to solve interference and resource shortage problems in wireless access networks. With such schemes, a mobile node with excellent cellular connectivity can momentarily accept to relay traffic for its neighbors experiencing poor radio conditions and use Device-to-Device (D2D) communications to accomplish the task. This thesis provides a novel and comprehensive analytical framework that allows evaluating the effects of D2D communications in access networks in terms of spectrum and energy efficiency. The analysis covers the cases in which D2D communications use the same bandwidth of legacy cellular users (in-band D2D) or a different one (out-band D2D) and leverages on the characterization of underlying queueing systems and protocols to capture the complex intertwining of short-range and legacy WiFi and cellular communications. The analysis also unveils how D2D affects the use and scope of other optimization techniques used for, e.g., interference coordination and fairness in resource distribution. Indeed, characterizing the performance of D2D-enabled wireless access networks plays an essential role in the optimization of system operation and, as a consequence, permits to assess the general applicability of D2D solutions. With such characterization, we were able to design several mechanisms that improve system capabilities. Specifically, we propose bandwidth resource management techniques for controlling interference when cellular users and D2D pairs share the same spectrum, we design advanced and energy-aware access selection mechanisms, we show how to adopt D2D communications in conjunction with interference coordination schemes to achieve high and fair throughputs, and we discuss on end-to-end fairness—beyond the use of access network resources—when D2D communications is adopted in C-RAN. The results reported in this thesis show that identifying performance bottlenecks is key to properly control network operation, and, interestingly, bottlenecks may not be represented just by wireless resources when end-to-end fairness is of concern.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Marco Ajmone Marsan.- Secretario: Miquel Payaró Llisterri.- Vocal: Omer Gurewit

    Research challenges on energy-efficient networking design

    Get PDF
    The networking research community has started looking into key questions on energy efficiency of communication networks. The European Commission activated under the FP7 the TREND Network of Excellence with the goal of establishing the integration of the EU research community in green networking with a long perspective to consolidate the European leadership in the field. TREND integrates the activities of major European players in networking, including manufacturers, operators, research centers, to quantitatively assess the energy demand of current and future telecom infrastructures, and to design energy-efficient, scalable and sustainable future networks. This paper describes the main results of the TREND research community and concludes with a roadmap describing the next steps for standardization, regulation agencies and research in both academia and industry.The research leading to these results has received funding from the EU 7th Framework Programme (FP7/2007–2013) under Grant Agreement No. 257740 (NoE TREND)

    From self-sustainable Green Mobile Networks to enhanced interaction with the Smart Grid

    Get PDF
    Due to the staggering increase of mobile traffic, Mobile Network Operators (MNOs) are facing considerable operational cost due to power supply. Renewable Energy (RE) sources to power Base Stations (BSs) represent a promising solution to lower the energy bill, but their intermittent nature may affect the service continuity and the system self-sufficiency. Furthermore, in the new energy market dominated by the Smart Grid, new potentialities arise for MNOs in a Demand Response (DR) framework, since they can dynamically modulate the mobile network energy demand in accordance with SG requests, thus obtaining significant rewards. This work proposes various stochastic models to reliably and accurately characterize the RE production and the operation of a green mobile network, also analyzing the impact of parameter quantization on the model performance. The RE system dimensioning is investigated, trading off cost saving and feasibility constraints, and evaluating the impact of Resource on Demand (RoD) strategies, that allow to achieve more than 40% cost reduction. Finally, by exploiting RoD and WiFi offloading techniques, various energy management policies are designed to enhance the interaction of a green mobile network with the SG in a DR framework, leading to fully erase the energy bill and even gain positive revenues

    An Analysis of Renewable Energy Usage by Mobile Data Network Operators

    Get PDF
    The exponential growth in mobile data traffic has resulted in massive energy usage and therefore has increased the carbon footprint of the Internet. Data network operators have taken significant initiatives to mitigate the negative impacts of carbon emissions (CE). Renewable Energy Sources (RES) have emerged as the most promising way to reduce carbon emissions. This article presents the role of renewable energy (RE) in minimizing the environmental impacts of mobile data communications for achieving a greener environment. In this article, an analysis of some selected mobile data network operators’ energy consumption (EC) has been presented. Based on the current statistics of different mobile network operators, the future energy values are estimated. These estimations of carbon emissions are based on the predicted data traffic in the coming years and the percentage consumption of energy from renewable sources by the network operators. The analysis presented in this article would be helpful to develop and implement energy policies that accelerate the process of increasing the renewable shares in total energy requirements. Incrementing the share of renewable energy in total energy requirements can be a way forward to reach Goal 7 of the United Nations Sustainable Development Goals (SDGs)

    Low complexity and efficient dynamic spectrum learning and tunable bandwidth access for heterogeneous decentralized cognitive radio networks

    Get PDF
    International audienceThis paper deals with the design of the low complexity and efficient dynamic spectrum learning and access (DSLA) scheme for next-generation heterogeneous decentralized Cognitive Radio Networks (CRNs) such as Long Term Evolution-Advanced and 5G. Existing DSLA schemes for decentralized CRNs are focused predominantly on the decision making policies which perform the task of orthogonalization of secondary users to optimum vacant subbands of fixed bandwidth. The focus of this paper is the design of DSLA scheme for decentralized CRNs to support the tunable vacant bandwidth requirements of the secondary users while minimizing the computationally intensive subband switchings. We first propose a new low complexity VDF which is designed by modifying second order frequency transformation and subsequently combining it with the interpolation technique. It is referred to as Interpolation and Modified Frequency Transformation based VDF (IMFT-VDF) and it provides tunable bandpass responses anywhere over Nyquist band with complete control over the bandwidth as well as the center frequency. Second, we propose a tunable decision making policy, ρt_randρt_rand, consisting of learning and access unit, and is designed to take full advantage of exclusive frequency response control offered by IMFT-VDF. The simulation results verify the superiority of the proposed DSLA scheme over the existing DSLA schemes while complexity comparisons indicate total gate count savings from 11% to as high as 87% over various existing schemes. Also, lower number of subband switchings make the proposed scheme power-efficient and suitable for battery-operated cognitive radio terminals

    The design and optimization of cooperative mobile edge

    Get PDF
    As the world is charging towards the Internet of Things (IoT) era, an enormous amount of sensors will be rapidly empowered with internet connectivity. Besides the fact that the end devices are getting more diverse, some of them are also becoming more powerful, such that they can function as standalone mobile computing units with multiple wireless network interfaces. At the network end, various facilities are also pushed to the mobile edge to foster internet connections. Distributed small scale cloud resources and green energy harvesters can be directly attached to the deployed heterogeneous base stations. Different from the traditional wireless access networks, where the only dynamics come from the user mobility, the evolving mobile edge will be operated in the constantly changing and volatile environment. The harvested green energy will be highly dependent on the available energy sources, and the dense deployment of a variety of wireless access networks will result in intense radio resource contention. Consequently, the wireless networks are facing great challenges in terms of capacity, latency, energy/spectrum efficiency, and security. Equivalently, balancing the dynamic network resource demand and supply is essential to the smooth network operation. Leveraging the broadcasting nature of wireless data transmission, network nodes can cooperate with each other by either allowing users to connect with multiple base stations simultaneously or offloading user workloads to neighboring base stations. Moreover, grid facilitated and radio frequency signal enabled renewable energy sharing among network nodes are introduced in this dissertation. In particular, the smart grid can transfer the green energy harvested by each individual network node from one place to another. The network node can also transmit energy from one to another using radio frequency energy transfer. This dissertation addresses the cooperative network resource management to improve the energy efficiency of the mobile edge. First, the energy efficient cooperative data transmission scheme is designed to cooperatively allocate the radio resources of the wireless networks, including spectrum and power, to the mobile users. Then, the cooperative data transmission and wireless energy sharing scheme is designed to optimize both the energy and data transmission in the network. Finally, the cooperative data transmission and wired energy sharing scheme is designed to optimize the energy flow within the smart grid and the data transmission in the network. As future work, how to motivate multiple parties to cooperate and how to guarantee the security of the cooperative mobile edge is discussed. On one hand, the incentive scheme for each individual network node with distributed storage and computing resources is designed to improve network performance in terms of latency. On the other hand, how to leverage network cooperation to balance the tradeoff between efficiency (energy efficiency and latency) and security (confidentiality and privacy) is expounded

    Facing the Reality: Validation of Energy Saving Mechanisms on a Testbed

    Get PDF
    Two energy saving approaches, called Fixed Upper Fixed Lower (FUFL) and Dynamic Upper Fixed Lower (DUFL), switching off idle optical Gigabit Ethernet (GbE) interfaces during low traffic periods, have been implemented on a testbed. We show on a simple network scenario that energy can be saved using off-the-shelf equipment not explicitly designed for dynamic on/off operation. No packet loss is experienced in our experiments. We indicate the need for faster access to routers in order to perform the reconfiguration. This is particularly important for the more sophisticated energy saving approaches such as DUFL, since FUFL can be implemented locally

    Low-cost environmental sensor networks:recent advances and future directions

    Get PDF
    The use of low-cost sensor networks (LCSNs) is becoming increasingly popular in the environmental sciences and the unprecedented monitoring data generated enable research across a wide spectrum of disciplines and applications. However, in particular, non-technical challenges still hinder the broader development and application of LCSNs. This paper reviews the development of LCSNs over the last 15 years, highlighting trends and future opportunities for a diverse range of environmental applications. We found air quality, meteorological and water-related networks were particularly well represented with few studies focusing on sensor networks for ecological systems. Furthermore, we identified bias toward studies that have direct links to human health, safety and livelihoods. These studies were more likely to involve downstream data analytics, visualizations, and multi-stakeholder participation through citizen science initiatives. However, there was a paucity of studies that considered sustainability factors for the development and implementation of LCSNs. Existing LCSNs are largely focused on detecting and mitigating events which have a direct impact on humans such as flooding, air pollution or geo-hazards, while these applications are important there is a need for future development of LCSNs for monitoring ecosystem structure and function. Our findings highlight three distinct opportunities for future research to unleash the full potential of LCSNs: (1) improvement of links between data collection and downstream activities; (2) the potential to broaden the scope of application systems and fields; and (3) to better integrate stakeholder engagement and sustainable operation to enable longer and greater societal impacts

    From serendipity to sustainable Green IoT: technical, industrial and political perspective

    Get PDF
    Recently, Internet of Things (IoT) has become one of the largest electronics market for hardware production due to its fast evolving application space. However, one of the key challenges for IoT hardware is the energy efficiency as most of IoT devices/objects are expected to run on batteries for months/years without a battery replacement or on harvested energy sources. Widespread use of IoT has also led to a largescale rise in the carbon footprint. In this regard, academia, industry and policy-makers are constantly working towards new energy-efficient hardware and software solutions paving the way for an emerging area referred to as green-IoT. With the direct integration and the evolution of smart communication between physical world and computer-based systems, IoT devices are also expected to reduce the total amount of energy consumption for the Information and Communication Technologies (ICT) sector. However, in order to increase its chance of success and to help at reducing the overall energy consumption and carbon emissions a comprehensive investigation into how to achieve green-IoT is required. In this context, this paper surveys the green perspective of the IoT paradigm and aims to contribute at establishing a global approach for green-IoT environments. A comprehensive approach is presented that focuses not only on the specific solutions but also on the interaction among them, and highlights the precautions/decisions the policy makers need to take. On one side, the ongoing European projects and standardization efforts as well as industry and academia based solutions are presented and on the other side, the challenges, open issues, lessons learned and the role of policymakers towards green-IoT are discussed. The survey shows that due to many existing open issues (e.g., technical considerations, lack of standardization, security and privacy, governance and legislation, etc.) that still need to be addressed, a realistic implementation of a sustainable green-IoT environment that could be universally accepted and deployed, is still missing
    corecore