31 research outputs found

    Privacy-Aware Access Protocols for MEC Applications in 5G

    Get PDF
    Multi-access edge computing (MEC) is one of the emerging key technologies in fifth generation (5G) mobile networks, providing reduced end-to-end latency for applications and reduced load in the transport network. This paper proposes mechanisms to enhance user privacy in MEC within 5G. We consider a basic MEC usage scenario, where the user accesses an application hosted in the MEC platform via the radio access network of the mobile network operator (MNO). First, we create a system model based on this scenario. Second, we define the adversary model and give the list of privacy requirements for this system model. We also analyze the impact on user privacy when some of the parties in our model share information that is not strictly needed for providing the service. Third, we introduce a privacy-aware access protocol for the system model and analyze this protocol against the privacy requirements

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing

    Greedy Heuristics for Judicious Hypergraph Partitioning

    Get PDF
    We investigate the efficacy of greedy heuristics for the judicious hypergraph partitioning problem. In contrast to balanced partitioning problems, the goal of judicious hypergraph partitioning is to minimize the maximum load over all blocks of the partition. We devise strategies for initial partitioning and FM-style post-processing. In combination with a multilevel scheme, they beat the previous state-of-the-art solver - based on greedy set covers - in both running time (two to four orders of magnitude) and solution quality (18% to 45%). A major challenge that makes local greedy approaches difficult to use for this problem is the high frequency of zero-gain moves, for which we present and evaluate counteracting mechanisms

    Accelerating Binary String Comparisons with a Scalable, Streaming-Based System Architecture Based on FPGAs

    Get PDF
    Pilz S, Porrmann F, Kaiser M, Hagemeyer J, Hogan JM, Rückert U. Accelerating Binary String Comparisons with a Scalable, Streaming-Based System Architecture Based on FPGAs. Algorithms. 2020;13(2): 47.This paper is concerned with Field Programmable Gate Arrays (FPGA)-based systems for energy-efficient high-throughput string comparison. Modern applications which involve comparisons across large data sets—such as large sequence sets in molecular biology—are by their nature computationally intensive. In this work, we present a scalable FPGA-based system architecture to accelerate the comparison of binary strings. The current architecture supports arbitrary lengths in the range 16 to 2048-bit, covering a wide range of possible applications. In our example application, we consider DNA sequences embedded in a binary vector space through Locality Sensitive Hashing (LSH) one of several possible encodings that enable us to avoid more costly character-based operations. Here the resulting encoding is a 512-bit binary signature with comparisons based on the Hamming distance. In this approach, most of the load arises from the calculation of the O ( m ∗ n ) Hamming distances between the signatures, where m is the number of queries and n is the number of signatures contained in the database. Signature generation only needs to be performed once, and we do not consider it further, focusing instead on accelerating the signature comparisons. The proposed FPGA-based architecture is optimized for high-throughput using hundreds of computing elements, arranged in a systolic array. These core computing elements can be adapted to support other string comparison algorithms with little effort, while the other infrastructure stays the same. On a Xilinx Virtex UltraScale+ FPGA (XCVU9P-2), a peak throughput of 75.4 billion comparisons per second—of 512-bit signatures—was achieved, using a design with 384 parallel processing elements and a clock frequency of 200 MHz. This makes our FPGA design 86 times faster than a highly optimized CPU implementation. Compared to a GPU design, executed on an NVIDIA GTX1060, it performs nearly five times faster

    ProvLight: Efficient Workflow Provenance Capture on the Edge-to-Cloud Continuum

    Full text link
    Modern scientific workflows require hybrid infrastructures combining numerous decentralized resources on the IoT/Edge interconnected to Cloud/HPC systems (aka the Computing Continuum) to enable their optimized execution. Understanding and optimizing the performance of such complex Edge-to-Cloud workflows is challenging. Capturing the provenance of key performance indicators, with their related data and processes, may assist in understanding and optimizing workflow executions. However, the capture overhead can be prohibitive, particularly in resource-constrained devices, such as the ones on the IoT/Edge.To address this challenge, based on a performance analysis of existing systems, we propose ProvLight, a tool to enable efficient provenance capture on the IoT/Edge. We leverage simplified data models, data compression and grouping, and lightweight transmission protocols to reduce overheads. We further integrate ProvLight into the E2Clab framework to enable workflow provenance capture across the Edge-to-Cloud Continuum. This integration makes E2Clab a promising platform for the performance optimization of applications through reproducible experiments.We validate ProvLight at a large scale with synthetic workloads on 64 real-life IoT/Edge devices in the FIT IoT LAB testbed. Evaluations show that ProvLight outperforms state-of-the-art systems like ProvLake and DfAnalyzer in resource-constrained devices. ProvLight is 26 -- 37x faster to capture and transmit provenance data; uses 5 -- 7x less CPU; 2x less memory; transmits 2x less data; and consumes 2 -- 2.5x less energy. ProvLight and E2Clab are available as open-source tools

    Evaluation of classical machine learning techniques towards urban sound recognition embedded systems

    Get PDF
    Automatic urban sound classification is a desirable capability for urban monitoring systems, allowing real-time monitoring of urban environments and recognition of events. Current embedded systems provide enough computational power to perform real-time urban audio recognition. Using such devices for the edge computation when acting as nodes of Wireless Sensor Networks (WSN) drastically alleviates the required bandwidth consumption. In this paper, we evaluate classical Machine Learning (ML) techniques for urban sound classification on embedded devices with respect to accuracy and execution time. This evaluation provides a real estimation of what can be expected when performing urban sound classification on such constrained devices. In addition, a cascade approach is also proposed to combine ML techniques by exploiting embedded characteristics such as pipeline or multi-thread execution present in current embedded devices. The accuracy of this approach is similar to the traditional solutions, but provides in addition more flexibility to prioritize accuracy or timing

    Detection and Mitigation of DoS and DDoS Attacks in IoT-Based Stateful SDN: An Experimental Approach

    Get PDF
    The expected advent of the Internet of Things (IoT) has triggered a large demand of embedded devices, which envisions the autonomous interaction of sensors and actuators while offering all sort of smart services. However, these IoT devices are limited in computation, storage, and network capacity, which makes them easy to hack and compromise. To achieve secure development of IoT, it is necessary to engineer scalable security solutions optimized for the IoT ecosystem. To this end, Software Defined Networking (SDN) is a promising paradigm that serves as a pillar in the fifth generation of mobile systems (5G) that could help to detect and mitigate Denial of Service (DoS) and Distributed DoS (DDoS) threats. In this work, we propose to experimentally evaluate an entropy-based solution to detect and mitigate DoS and DDoS attacks in IoT scenarios using a stateful SDN data plane. The obtained results demonstrate for the first time the effectiveness of this technique targeting real IoT data traffic.This research was funded by EU, European Regional Development Fund, and the regional government of Extremadura, Spain, grant number IB18003, the Spanish Ministry of Science, Innovation and Universities grant numbers TIN2016-75097-P, RTI2018-102002-A-I00, PEJ2018-003648-A and FEDER and Junta de Andalucía grant number B-TIC-402-UGR18
    corecore