31 research outputs found

    Soft robotics for infrastructure protection

    Get PDF
    The paradigm change introduced by soft robotics is going to dramatically push forward the abilities of autonomous systems in the next future, enabling their applications in extremely challenging scenarios. The ability of soft robots to safely interact and adapt to the surroundings is key to operate in unstructured environments, where the autonomous agent has little or no knowledge about the world around it. A similar context occurs when critical infrastructures face threats or disruptions, for examples due to natural disasters or external attacks (physical or cyber). In this case, autonomous systems may be employed to respond to such emergencies and have to be able to deal with unforeseen physical conditions and uncertainties, where the mechanical interaction with the environment is not only inevitable but also desirable to successfully perform their tasks. In this perspective, I discuss applications of soft robots for the protection of infrastructures, including recent advances in pipelines inspection, rubble search and rescue, and soft aerial manipulation, and promising perspectives on operations in radioactive environments, underwater monitoring and space exploration

    MultiTip:A multimodal mechano-thermal soft fingertip

    Get PDF

    PolyJet-Printed Bellows Actuators: Design, Structural Optimization, and Experimental Investigation

    Get PDF
    Pneumatic bellows actuators are exceptionally suitable for Additive Manufacturing (AM) as the required geometrical complexity can easily be obtained and their functionality is not affected by rough surfaces and small dimensional accuracy. This paper is an extended version of a previously published contribution to the RoboSoft2018 conference in Livorno, Italy. The original paper (Dämmer et al., 2018) contains a simulation-driven design approach as well as experimental investigations of the structural and fatigue behavior of pneumatic multi-material PolyJet™ bellows actuators. This extended version is enhanced with investigations on the relaxation behavior of PolyJet bellows actuators. The presented results are useful for researchers and engineers considering the application of PolyJet bellows actuators for pneumatic robots

    Multi-directional crawling robot with soft actuators and electroadhesive grippers

    Get PDF
    This paper presents the design of a planar, low profile, multi-directional soft crawling robot. The robot combines soft electroactive polymer actuators with compliant electroadhesive feet. A theoretical model of a multi-sector dielectric elastomer actuator is presented. The relation between actuator stroke and blocking force is experimentally validated. Electrostatic adhesion is employed to provide traction between the feet of the robot and the crawling surface. Shear force is experimentally determined and forces up to 3N have been achieved with the current pad design. A 2D multi-directional gait is demonstrated with the robot prototype. Speeds up to 12mm/s (0.1 body-lengths/s) have been observed. The robot has the potential to move on a variety of surfaces and across gradients, a useful ability in scenarios involving exploration.</p

    Performance optimization of a conical dielectric elastomer actuator

    Get PDF
    Dielectric elastomer actuators (DEAs) are known as &lsquo;artificial muscles&rsquo; due to their large actuation strain, high energy density and self-sensing capability. The conical configuration has been widely adopted in DEA applications such as bio-inspired locomotion and micropumps for its good compactness, ease for fabrication and large actuation stroke. However, the conical protrusion of the DEA membrane is characterized by inhomogeneous stresses, which complicate their design. In this work, we present an analytical model-based optimization for conical DEAs with the three biasing elements: (I) linear compression spring; (II) biasing mass; and (III) antagonistic double-cone DEA. The optimization is to find the maximum stroke and work output of a conical DEA by tuning its geometry (inner disk to outer frame radius ratio a/b) and pre-stretch ratio. The results show that (a) for all three cases, stroke and work output are maximum for a pre-stretch ratio of 1 &times; 1 for the Parker silicone elastomer, which suggests the stretch caused by out-of-plane deformation is sufficient for this specific elastomer. (b) Stroke maximization is obtained for a lower a/b ratio while a larger a/b ratio is required to maximize work output, but the optimal a/b ratio is less than 0.3 in all three cases. (c) The double-cone configuration has the largest stroke while single cone with a biasing mass has the highest work output

    Flapping at resonance:Realization of an electroactive elastic thorax

    Get PDF

    Inflatable structures and digital fabrication

    Get PDF
    The construction industry has changed drastically over the past several decades. In today’s age, engineers and architects aim to build bigger and lighter whilst remaining sustainable. Inflatable structures can be utilized to achieve these aims. This study investigates how to digitally manufacture inflatable structures to be more efficient. For this reason, digital manufacturing as well as casting and moulding are studied and compared. Firstly, software modelling was explored to evaluate the behaviour of elastomeric materials. 3D printing in Tango Plus FLX930 and silicone casting was compared. It was found that Tango Plus FLX930 was inadequate due to its low elasticity compared to the considered silicones. Under pneumatic loading, indeed, Tango Plus FLX930 would delaminate. Whereas, with casting and moulding silicone, the prototype could resist the required amount of internal pressures. This shows the feasibility of moulding and casting and the limitation of 3D printing fabrication techniques
    corecore