100 research outputs found

    Hydrodynamics of Biomimetic Marine Propulsion and Trends in Computational Simulations

    Get PDF
    [Abstract] The aim of the present paper is to provide the state of the works in the field of hydrodynamics and computational simulations to analyze biomimetic marine propulsors. Over the last years, many researchers postulated that some fish movements are more efficient and maneuverable than traditional rotary propellers, and the most relevant marine propulsors which mimic fishes are shown in the present work. Taking into account the complexity and cost of some experimental setups, numerical models offer an efficient, cheap, and fast alternative tool to analyze biomimetic marine propulsors. Besides, numerical models provide information that cannot be obtained using experimental techniques. Since the literature about trends in computational simulations is still scarce, this paper also recalls the hydrodynamics of the swimming modes occurring in fish and summarizes the more relevant lines of investigation of computational models

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Fuzzy-PID controller for an energy efficient personal vehicle: Two-wheel electric skateboard

    Get PDF
    The two-wheeled electric skateboard (TWS) is designed for a personal vehicle. A Fuzzy-PID control strategy is designed and implemented for controlling its motion. Basically, motions control of the TWS is performed by balancing the pitch position of the TWS. Performance of the designed controller is demonstrated experimentally. The Fuzzy algorithm updates the PID gains and therefore it can handle the changing of the TWS load. Contribution of Fuzzy-PID in reducing the electric energy consumption, which is an important issue in electrical system, is also evaluated. The Fuzzy-PID successes to reduce the electric energy consumption of the TWS compared to the conventional PID

    Mobile robot transportation in laboratory automation

    Get PDF
    In this dissertation a new mobile robot transportation system is developed for the modern laboratory automation to connect the distributed automated systems and workbenches. In the system, a series of scientific and technical robot indoor issues are presented and solved, including the multiple robot control strategy, the indoor transportation path planning, the hybrid robot indoor localization, the recharging optimization, the robot-automated door interface, the robot blind arm grasping & placing, etc. The experiments show the proposed system and methods are effective and efficient

    Dynamic tracking of minimally invasive spine surgery robot

    Full text link

    Mobile Robot Localisation and Navigation Using LEGO NXT and Ultrasonic Sensor

    Get PDF

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Model for Estimation of Bounds in Digital Coding of Seabed Images

    Get PDF
    This paper proposes the novel model for estimation of bounds in digital coding of images. Entropy coding of images is exploited to measure the useful information content of the data. The bit rate achieved by reversible compression using the rate-distortion theory approach takes into account the contribution of the observation noise and the intrinsic information of hypothetical noise-free image. Assuming the Laplacian probability density function of the quantizer input signal, SQNR gains are calculated for image predictive coding system with non-adaptive quantizer for white and correlated noise, respectively. The proposed model is evaluated on seabed images. However, model presented in this paper can be applied to any signal with Laplacian distribution

    Human action classification based on sequential bag-of-words model

    Get PDF
    Recently, approaches utilizing spatial-temporal features have achieved great success in human action classification. However, they typically rely on bag-of-words (BoWs) model, and ignore the spatial and temporal structure information of visual words, bringing ambiguities among similar actions. In this paper, we present a novel approach called sequential BoWs for efficient human action classification. It captures temporal sequential structure by segmenting the entire action into sub-actions. Each sub-action has a tiny movement within a narrow range of action. Then the sequential BoWs are created, in which each sub-action is assigned with a certain weight and salience to highlight the distinguishing sections. It is noted that the weight and salience are figured out in advance according to the sub-action's discrimination evaluated by training data. Finally, those sub-actions are used for classification respectively, and voting for united result. Experiments are conducted on UT-interaction dataset and Rochester dataset. The results show its higher robustness and accuracy over most state-of-the-art classification approaches. ? 2014 IEEE.EI2280-228
    • …
    corecore