333 research outputs found

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Advanced Feedback Linearization Control for Tiltrotor UAVs: Gait Plan, Controller Design, and Stability Analysis

    Full text link
    Three challenges, however, can hinder the application of Feedback Linearization: over-intensive control signals, singular decoupling matrix, and saturation. Activating any of these three issues can challenge the stability proof. To solve these three challenges, first, this research proposed the drone gait plan. The gait plan was initially used to figure out the control problems in quadruped (four-legged) robots; applying this approach, accompanied by Feedback Linearization, the quality of the control signals was enhanced. Then, we proposed the concept of unacceptable attitude curves, which are not allowed for the tiltrotor to travel to. The Two Color Map Theorem was subsequently established to enlarge the supported attitude for the tiltrotor. These theories were employed in the tiltrotor tracking problem with different references. Notable improvements in the control signals were witnessed in the tiltrotor simulator. Finally, we explored the control theory, the stability proof of the novel mobile robot (tilt vehicle) stabilized by Feedback Linearization with saturation. Instead of adopting the tiltrotor model, which is over-complicated, we designed a conceptual mobile robot (tilt-car) to analyze the stability proof. The stability proof (stable in the sense of Lyapunov) was found for a mobile robot (tilt vehicle) controlled by Feedback Linearization with saturation for the first time. The success tracking result with the promising control signals in the tiltrotor simulator demonstrates the advances of our control method. Also, the Lyapunov candidate and the tracking result in the mobile robot (tilt-car) simulator confirm our deductions of the stability proof. These results reveal that these three challenges in Feedback Linearization are solved, to some extents.Comment: Doctoral Thesis at The University of Toky

    Generalising weighted model counting

    Get PDF
    Given a formula in propositional or (finite-domain) first-order logic and some non-negative weights, weighted model counting (WMC) is a function problem that asks to compute the sum of the weights of the models of the formula. Originally used as a flexible way of performing probabilistic inference on graphical models, WMC has found many applications across artificial intelligence (AI), machine learning, and other domains. Areas of AI that rely on WMC include explainable AI, neural-symbolic AI, probabilistic programming, and statistical relational AI. WMC also has applications in bioinformatics, data mining, natural language processing, prognostics, and robotics. In this work, we are interested in revisiting the foundations of WMC and considering generalisations of some of the key definitions in the interest of conceptual clarity and practical efficiency. We begin by developing a measure-theoretic perspective on WMC, which suggests a new and more general way of defining the weights of an instance. This new representation can be as succinct as standard WMC but can also expand as needed to represent less-structured probability distributions. We demonstrate the performance benefits of the new format by developing a novel WMC encoding for Bayesian networks. We then show how existing WMC encodings for Bayesian networks can be transformed into this more general format and what conditions ensure that the transformation is correct (i.e., preserves the answer). Combining the strengths of the more flexible representation with the tricks used in existing encodings yields further efficiency improvements in Bayesian network probabilistic inference. Next, we turn our attention to the first-order setting. Here, we argue that the capabilities of practical model counting algorithms are severely limited by their inability to perform arbitrary recursive computations. To enable arbitrary recursion, we relax the restrictions that typically accompany domain recursion and generalise circuits (used to express a solution to a model counting problem) to graphs that are allowed to have cycles. These improvements enable us to find efficient solutions to counting fundamental structures such as injections and bijections that were previously unsolvable by any available algorithm. The second strand of this work is concerned with synthetic data generation. Testing algorithms across a wide range of problem instances is crucial to ensure the validity of any claim about one algorithm’s superiority over another. However, benchmarks are often limited and fail to reveal differences among the algorithms. First, we show how random instances of probabilistic logic programs (that typically use WMC algorithms for inference) can be generated using constraint programming. We also introduce a new constraint to control the independence structure of the underlying probability distribution and provide a combinatorial argument for the correctness of the constraint model. This model allows us to, for the first time, experimentally investigate inference algorithms on more than just a handful of instances. Second, we introduce a random model for WMC instances with a parameter that influences primal treewidth—the parameter most commonly used to characterise the difficulty of an instance. We show that the easy-hard-easy pattern with respect to clause density is different for algorithms based on dynamic programming and algebraic decision diagrams than for all other solvers. We also demonstrate that all WMC algorithms scale exponentially with respect to primal treewidth, although at differing rates

    Proceedings of the 8th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2023)

    Get PDF
    This volume gathers the papers presented at the Detection and Classification of Acoustic Scenes and Events 2023 Workshop (DCASE2023), Tampere, Finland, during 21–22 September 2023

    Expectations and expertise in artificial intelligence: specialist views and historical perspectives on conceptualisation, promise, and funding

    Get PDF
    Artificial intelligence’s (AI) distinctiveness as a technoscientific field that imitates the ability to think went through a resurgence of interest post-2010, attracting a flood of scientific and popular expectations as to its utopian or dystopian transformative consequences. This thesis offers observations about the formation and dynamics of expectations based on documentary material from the previous periods of perceived AI hype (1960-1975 and 1980-1990, including in-between periods of perceived dormancy), and 25 interviews with UK-based AI specialists, directly involved with its development, who commented on the issues during the crucial period of uncertainty (2017-2019) and intense negotiation through which AI gained momentum prior to its regulation and relatively stabilised new rounds of long-term investment (2020-2021). This examination applies and contributes to longitudinal studies in the sociology of expectations (SoE) and studies of experience and expertise (SEE) frameworks, proposing a historical sociology of expertise and expectations framework. The research questions, focusing on the interplay between hype mobilisation and governance, are: (1) What is the relationship between AI practical development and the broader expectational environment, in terms of funding and conceptualisation of AI? (2) To what extent does informal and non-developer assessment of expectations influence formal articulations of foresight? (3) What can historical examinations of AI’s conceptual and promissory settings tell about the current rebranding of AI? The following contributions are made: (1) I extend SEE by paying greater attention to the interplay between technoscientific experts and wider collective arenas of discourse amongst non-specialists and showing how AI’s contemporary research cultures are overwhelmingly influenced by the hype environment but also contribute to it. This further highlights the interaction between competing rationales focusing on exploratory, curiosity-driven scientific research against exploitation-oriented strategies at formal and informal levels. (2) I suggest benefits of examining promissory environments in AI and related technoscientific fields longitudinally, treating contemporary expectations as historical products of sociotechnical trajectories through an authoritative historical reading of AI’s shifting conceptualisation and attached expectations as a response to availability of funding and broader national imaginaries. This comes with the benefit of better perceiving technological hype as migrating from social group to social group instead of fading through reductionist cycles of disillusionment; either by rebranding of technical operations, or by the investigation of a given field by non-technical practitioners. It also sensitises to critically examine broader social expectations as factors for shifts in perception about theoretical/basic science research transforming into applied technological fields. Finally, (3) I offer a model for understanding the significance of interplay between conceptualisations, promising, and motivations across groups within competing dynamics of collective and individual expectations and diverse sources of expertise

    Learning-based robotic grasping: A review

    Get PDF
    As personalization technology increasingly orchestrates individualized shopping or marketing experiences in industries such as logistics, fast-moving consumer goods, and food delivery, these sectors require flexible solutions that can automate object grasping for unknown or unseen objects without much modification or downtime. Most solutions in the market are based on traditional object recognition and are, therefore, not suitable for grasping unknown objects with varying shapes and textures. Adequate learning policies enable robotic grasping to accommodate high-mix and low-volume manufacturing scenarios. In this paper, we review the recent development of learning-based robotic grasping techniques from a corpus of over 150 papers. In addition to addressing the current achievements from researchers all over the world, we also point out the gaps and challenges faced in AI-enabled grasping, which hinder robotization in the aforementioned industries. In addition to 3D object segmentation and learning-based grasping benchmarks, we have also performed a comprehensive market survey regarding tactile sensors and robot skin. Furthermore, we reviewed the latest literature on how sensor feedback can be trained by a learning model to provide valid inputs for grasping stability. Finally, learning-based soft gripping is evaluated as soft grippers can accommodate objects of various sizes and shapes and can even handle fragile objects. In general, robotic grasping can achieve higher flexibility and adaptability, when equipped with learning algorithms

    Sensing the Cultural Significance with AI for Social Inclusion

    Get PDF
    Social Inclusion has been growing as a goal in heritage management. Whereas the 2011 UNESCO Recommendation on the Historic Urban Landscape (HUL) called for tools of knowledge documentation, social media already functions as a platform for online communities to actively involve themselves in heritage-related discussions. Such discussions happen both in “baseline scenarios” when people calmly share their experiences about the cities they live in or travel to, and in “activated scenarios” when radical events trigger their emotions. To organize, process, and analyse the massive unstructured multi-modal (mainly images and texts) user-generated data from social media efficiently and systematically, Artificial Intelligence (AI) is shown to be indispensable. This thesis explores the use of AI in a methodological framework to include the contribution of a larger and more diverse group of participants with user-generated data. It is an interdisciplinary study integrating methods and knowledge from heritage studies, computer science, social sciences, network science, and spatial analysis. AI models were applied, nurtured, and tested, helping to analyse the massive information content to derive the knowledge of cultural significance perceived by online communities. The framework was tested in case study cities including Venice, Paris, Suzhou, Amsterdam, and Rome for the baseline and/or activated scenarios. The AI-based methodological framework proposed in this thesis is shown to be able to collect information in cities and map the knowledge of the communities about cultural significance, fulfilling the expectation and requirement of HUL, useful and informative for future socially inclusive heritage management processes
    corecore