9 research outputs found

    Stereo Visual Odometry for Indoor Localization of Ship Model

    Get PDF
    Typically, ships are designed for open sea navigation and thus research of autonomous ships is mostly done for that particular area. This paper explores the possibility of using low-cost sensors for localization inside the small navigation area. The localization system is based on the technology used for developing autonomous cars. The main part of the system is visual odometry using stereo cameras fused with Inertial Measurement Unit (IMU) data coupled with Kalman and particle filters to get decimetre level accuracy inside a basin for different surface conditions. The visual odometry uses cropped frames for stereo cameras and Good features to track algorithm for extracting features to get depths for each feature that is used for estimation of ship model movement. Experimental results showed that the proposed system could localize itself within a decimetre accuracy implying that there is a real possibility for ships in using visual odometry for autonomous navigation on narrow waterways, which can have a significant impact on future transportation

    Wireless Network Requirements and Solutions for the Future Circular Collider: A Hostile Indoor Environment

    Get PDF
    The European organization for nuclear research (CERN) is planning a high performance particle collider by 2050, which will update the currently used Large Hadron Collider (LHC). The design of the new experiment facility includes the definition of a suitable communication infrastructure to support the future needs of scientists. The huge amount of data collected by the measurement devices call for a data rate of at least 1Gb/s per node, while the need of timely control of instruments requires a low latency of the order of 0.01μs. Moreover, the main tunnel will be 100 km long, and will need appropriate coverage for voice and data traffic, in a special underground environment subject also to strong radiations. Reliable voice, data and video transmission in a tunnel of this length is necessary to ensure timely and localized intervention, reducing access time. In addition, using wireless communication for voice, control and data acquisition of accelerator technical systems could lead to a significant reduction in cabling costs, installation times and maintenance efforts. The communication infrastructure of the Future Circular Collider (FCC) tunnel must be able to circumvent the problems of radioactivity, omnipresent in the tunnel. Current technologies transceivers cannot transmit in such a severely radioactive environment. This is due to the immediate destruction of any active or passive equipment by radioactivity. The scope of this paper is to determine the feasibility of robust wireless transmission in an underground radioactive tunnel environment. The network infrastructure design to meet the demand will be introduced, and the performance of different wireless technologies will be evaluated.Peer reviewedFinal Accepted Versio

    An Efficient Scheme for Determining the Power Loss in Wind-PV Based on Deep Learning

    Get PDF
    Power loss is a bottleneck in every power system and it has been in focus of majority of the researchers and industry. This paper proposes a new method for determining the power loss in wind-solar power system based on deep learning. The main idea of the proposed scheme is to freeze the feature extraction layer of the deep Boltzmann network and deploy deep learning training model as the source model. The sample data with closer distribution with the data under consideration is selected by defining the maximum mean discrepancy contribution coefficient. The power loss calculation model is developed by configuring the deep neural network through the sample data. The deep learning model is deployed to simulate the non-linear mapping relationship between the load data, power supply data, bus voltage data and the grid loss rate during power grid operation. The proposed algorithm is applied to an actual power grid to evaluate its effectiveness. Simulation results show that the proposed algorithm effectively improved the system performance in terms of accuracy, fault tolerance, nonlinear fitting and timeliness as compared with existing schemes.publishedVersio

    Active SLAM: A Review On Last Decade

    Full text link
    This article presents a comprehensive review of the Active Simultaneous Localization and Mapping (A-SLAM) research conducted over the past decade. It explores the formulation, applications, and methodologies employed in A-SLAM, particularly in trajectory generation and control-action selection, drawing on concepts from Information Theory (IT) and the Theory of Optimal Experimental Design (TOED). This review includes both qualitative and quantitative analyses of various approaches, deployment scenarios, configurations, path-planning methods, and utility functions within A-SLAM research. Furthermore, this article introduces a novel analysis of Active Collaborative SLAM (AC-SLAM), focusing on collaborative aspects within SLAM systems. It includes a thorough examination of collaborative parameters and approaches, supported by both qualitative and statistical assessments. This study also identifies limitations in the existing literature and suggests potential avenues for future research. This survey serves as a valuable resource for researchers seeking insights into A-SLAM methods and techniques, offering a current overview of A-SLAM formulation.Comment: 34 pages, 8 figures, 6 table

    Cybersecurity of Industrial Cyber-Physical Systems: A Review

    Get PDF
    Industrial cyber-physical systems (ICPSs) manage critical infrastructures by controlling the processes based on the "physics" data gathered by edge sensor networks. Recent innovations in ubiquitous computing and communication technologies have prompted the rapid integration of highly interconnected systems to ICPSs. Hence, the "security by obscurity" principle provided by air-gapping is no longer followed. As the interconnectivity in ICPSs increases, so does the attack surface. Industrial vulnerability assessment reports have shown that a variety of new vulnerabilities have occurred due to this transition while the most common ones are related to weak boundary protection. Although there are existing surveys in this context, very little is mentioned regarding these reports. This paper bridges this gap by defining and reviewing ICPSs from a cybersecurity perspective. In particular, multi-dimensional adaptive attack taxonomy is presented and utilized for evaluating real-life ICPS cyber incidents. We also identify the general shortcomings and highlight the points that cause a gap in existing literature while defining future research directions.Comment: 32 pages, 10 figure

    A smart archive box for museum artifact monitoring using battery-less temperature and humidity sensing

    Get PDF
    For the first time, this paper reports a smart museum archive box that features a fully integrated wireless powered temperature and humidity sensor. The smart archive box has been specifically developed for microclimate environmental monitoring of stored museum artifacts in cultural heritage applications. The developed sensor does not require a battery and is wirelessly powered using Near Field Communications (NFC). The proposed solution enables a convenient means for wireless sensing with the operator by simply placing a standard smartphone in close proximity to the cardboard archive box. Wireless sensing capability has the advantage of enabling long-term environmental monitoring of the contents of the archive box without having to move and open the box for reading or battery replacement. This contributes to a sustainable preventive conservation strategy and avoids the risk of exposing the contents to the external environment, which may result in degradation of the stored artifacts. In this work, a low-cost and fully integrated NFC sensor has been successfully developed and demonstrated. The developed sensor is capable of wirelessly measuring temperature and relative humidity with a mean error of 0.37 °C and ±0.35%, respectively. The design has also been optimized for low power operation with a measured peak DC power consumption of 900 μW while yielding a 4.5 cm wireless communication range. The power consumption of the NFC sensor is one of the lowest found in the literature. To the author’s knowledge, the NFC sensor proposed in this paper is the first reporting of a smart archive box that is wirelessly powered and uniquely integrated within a cardboard archive box

    Cybersecurity of industrial cyber-physical systems: a review

    Get PDF
    Industrial cyber-physical systems (ICPSs) manage critical infrastructures by controlling the processes based on the “physics” data gathered by edge sensor networks. Recent innovations in ubiquitous computing and communication technologies have prompted the rapid integration of highly interconnected systems to ICPSs. Hence, the “security by obscurity” principle provided by air-gapping is no longer followed. As the interconnectivity in ICPSs increases, so does the attack surface. Industrial vulnerability assessment reports have shown that a variety of new vulnerabilities have occurred due to this transition. Although there are existing surveys in this context, very little is mentioned regarding the outputs of these reports. While these reports show that the most exploited vulnerabilities occur due to weak boundary protection, these vulnerabilities also occur due to limited or ill defined security policies. However, current literature focuses on intrusion detection systems (IDS), network traffic analysis (NTA) methods, or anomaly detection techniques. Hence, finding a solution for the problems mentioned in these reports is relatively hard. We bridge this gap by defining and reviewing ICPSs from a cybersecurity perspective. In particular, multi-dimensional adaptive attack taxonomy is presented and utilized for evaluating real-life ICPS cyber incidents. Finally, we identify the general shortcomings and highlight the points that cause a gap in existing literature while defining future research directions

    Clothing-Integrated Human-Technology Interaction

    Get PDF
    Due to the different disabilities of people and versatile use environments, the current handheld and screen-based digital devices on the market are not suitable for all consumers and all situations. Thus, there is an urgent need for human- technology interaction solutions, where the required input actions to digital devices are simple, easy to establish, and instinctive, allowing the whole society to effortlessly interact with the surrounding technology. In passive ultra-high frequency (UHF) radio frequency identification (RFID) systems, the tag consists only of an antenna and a simple integrated circuit (IC). The tag gets all the needed power from the RFID reader and can be thus seamlessly and in a maintenance-free way integrated into clothing. In this thesis, it is presented that by integrating passive UHF RFID technology into clothing, body movements and gestures can be monitored by monitoring the individual IDs and backscattered signals of the tags. Electro-textiles and embroidery with conductive thread are found to be suitable options when manufacturing and materials for such garments are considered. This thesis establishes several RFID- based interface solutions, multiple types of inputs through RFID platforms, and controlling the surrounding and communicating with RFID-based on/off functions. The developed intelligent clothing is visioned to provide versatile applications for assistive technology, for entertainment, and ambient assistant living, and for comfort and safety in work environments, just to name a few examples
    corecore