45 research outputs found

    Scenarios for Educational and Game Activities using Internet of Things Data

    Get PDF
    Raising awareness among young people and changing their behavior and habits concerning energy usage and the environment is key to achieving a sustainable planet. The goal to address the global climate problem requires informing the population on their roles in mitigation actions and adaptation of sustainable behaviors. Addressing climate change and achieve ambitious energy and climate targets requires a change in citizen behavior and consumption practices. IoT sensing and related scenario and practices, which address school children via discovery, gamification, and educational activities, are examined in this paper. Use of seawater sensors in STEM education, that has not previously been addressed, is included in these educational scenaria

    Signals in the Soil: An Introduction to Wireless Underground Communications

    Get PDF
    In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well

    Design and analysis of adaptive hierarchical low-power long-range networks

    Get PDF
    A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications

    Software Development Support for Shared Sensing Infrastructures: A Generative and Dynamic Approach

    Get PDF
    International audienceSensors networks are the backbone of large sensing infras-tructures such as Smart Cities or Smart Buildings. Classical approaches suffer from several limitations hampering developers' work (e.g., lack of sensor sharing, lack of dynamicity in data collection policies, need to dig inside big data sets, absence of reuse between implementation platforms). This paper presents a tooled approach that tackles these issues. It couples (i) an abstract model of developers' requirements in a given infrastructure to (ii) timed automata and code generation techniques, to support the efficient deployment of reusable data collection policies on different infrastructures. The approach has been validated on several real-world scenarios and is currently experimented on an academic campus

    Design and Test of a High-Performance Wireless Sensor Network for Irradiance Monitoring

    Get PDF
    Cloud-induced photovoltaic variability can affect grid stability and power quality, especially in electricity systems with high penetration levels. The availability of irradiance field forecasts in the scale of seconds and meters is fundamental for an adequate control of photovoltaic systems in order to minimize their impact on distribution networks. Irradiance sensor networks have proved to be efficient tools for supporting these forecasts, but the costs of monitoring systems with the required specifications are economically justified only for large plants and research purposes. This study deals with the design and test of a wireless irradiance sensor network as an adaptable operational solution for photovoltaic systems capable of meeting the measurement specifications necessary for capturing the clouds passage. The network was based on WiFi, comprised 16 pyranometers, and proved to be stable at sampling periods up to 25 ms, providing detailed spatial representations of the irradiance field and its evolution. As a result, the developed network was capable of achieving comparable specifications to research wired irradiance monitoring network with the advantages in costs and flexibility of the wireless technology, thus constituting a valuable tool for supporting nowcasting systems for photovoltaic management and control

    A systematic literature review

    Get PDF
    Bahaa, A., Abdelaziz, A., Sayed, A., Elfangary, L., & Fahmy, H. (2021). Monitoring real time security attacks for iot systems using devsecops: A systematic literature review. Information (Switzerland), 12(4), 1-23. [154]. https://doi.org/10.3390/info12040154In many enterprises and the private sector, the Internet of Things (IoT) has spread globally. The growing number of different devices connected to the IoT and their various protocols have contributed to the increasing number of attacks, such as denial-of-service (DoS) and remote-to-local (R2L) ones. There are several approaches and techniques that can be used to construct attack detection models, such as machine learning, data mining, and statistical analysis. Nowadays, this technique is commonly used because it can provide precise analysis and results. Therefore, we decided to study the previous literature on the detection of IoT attacks and machine learning in order to understand the process of creating detection models. We also evaluated various datasets used for the models, IoT attack types, independent variables used for the models, evaluation metrics for assessment of models, and monitoring infrastructure using DevSecOps pipelines. We found 49 primary studies, and the detection models were developed using seven different types of machine learning techniques. Most primary studies used IoT device testbed datasets, and others used public datasets such as NSL-KDD and UNSW-NB15. When it comes to measuring the efficiency of models, both numerical and graphical measures are commonly used. Most IoT attacks occur at the network layer according to the literature. If the detection models applied DevSecOps pipelines in development processes for IoT devices, they were more secure. From the results of this paper, we found that machine learning techniques can detect IoT attacks, but there are a few issues in the design of detection models. We also recommend the continued use of hybrid frameworks for the improved detection of IoT attacks, advanced monitoring infrastructure configurations using methods based on software pipelines, and the use of machine learning techniques for advanced supervision and monitoring.publishersversionpublishe

    Current Advances in Internet of Underground Things

    Get PDF
    The latest developments in Internet of Underground Things are covered in this chapter. First, the IOUT Architecture is discussed followed by the explanation of the challenges being faced in this paradigm. Moreover, a comprehensive coverage of the different IOUT components is presented that includes communications, sensing, and system integration with the cloud. An in-depth coverage of the applications of the IOUT in various disciplines is also surveyed. These applications include areas such as decision agriculture, pipeline monitoring, border control, and oil wells

    Decision Agriculture

    Get PDF
    In this chapter, the latest developments in the field of decision agriculture are discussed. The practice of management zones in digital agriculture is described for efficient and smart faming. Accordingly, the methodology for delineating management zones is presented. Modeling of decision support systems is explained along with discussion of the issues and challenges in this area. Moreover, the precision agriculture technology is also considered. Moreover, the chapter surveys the state of the decision agriculture technologies in the countries such as Bulgaria, Denmark, France, Israel, Malaysia, Pakistan, United Kingdom, Ukraine, and Sweden. Finally, different field factors such as GPS accuracy and crop growth are also analyzed
    corecore