3,179 research outputs found

    An Optimal House Price Prediction Algorithm: XGBoost

    Get PDF
    An accurate prediction of house prices is a fundamental requirement for various sectors, including real estate and mortgage lending. It is widely recognized that a property’s value is not solely determined by its physical attributes but is significantly influenced by its surrounding neighborhood. Meeting the diverse housing needs of individuals while balancing budget constraints is a primary concern for real estate developers. To this end, we addressed the house price prediction problem as a regression task and thus employed various machine learning (ML) techniques capable of expressing the significance of independent variables. We made use of the housing dataset of Ames City in Iowa, USA to compare XGBoost, support vector regressor, random forest regressor, multilayer perceptron, and multiple linear regression algorithms for house price prediction. Afterwards, we identified the key factors that influence housing costs. Our results show that XGBoost is the best performing model for house price prediction. Our findings present valuable insights and tools for stakeholders, facilitating more accurate property price estimates and, in turn, enabling more informed decision making to meet the housing needs of diverse populations while considering budget constraints

    DIC-Transformer: interpretation of plant disease classification results using image caption generation technology

    Get PDF
    Disease image classification systems play a crucial role in identifying disease categories in the field of agricultural diseases. However, current plant disease image classification methods can only predict the disease category and do not offer explanations for the characteristics of the predicted disease images. Due to the current situation, this paper employed image description generation technology to produce distinct descriptions for different plant disease categories. A two-stage model called DIC-Transformer, which encompasses three tasks (detection, interpretation, and classification), was proposed. In the first stage, Faster R-CNN was utilized to detect the diseased area and generate the feature vector of the diseased image, with the Swin Transformer as the backbone. In the second stage, the model utilized the Transformer to generate image captions. It then generated the image feature vector, which is weighted by text features, to improve the performance of image classification in the subsequent classification decoder. Additionally, a dataset containing text and visualizations for agricultural diseases (ADCG-18) was compiled. The dataset contains images of 18 diseases and descriptive information about their characteristics. Then, using the ADCG-18, the DIC-Transformer was compared to 11 existing classical caption generation methods and 10 image classification models. The evaluation indicators for captions include Bleu1–4, CiderD, and Rouge. The values of BLEU-1, CIDEr-D, and ROUGE were 0.756, 450.51, and 0.721. The results of DIC-Transformer were 0.01, 29.55, and 0.014 higher than those of the highest-performing comparison model, Fc. The classification evaluation metrics include accuracy, recall, and F1 score, with accuracy at 0.854, recall at 0.854, and F1 score at 0.853. The results of DIC-Transformer were 0.024, 0.078, and 0.075 higher than those of the highest-performing comparison model, MobileNetV2. The results indicate that the DIC-Transformer outperforms other comparison models in classification and caption generation

    Influence of Preaching’s Rhetorical Appeal on Evangelical Listeners’ Motivation

    Get PDF
    Preaching is a form of rhetorical narratology aimed at persuading its audience via sermons to experience a renewal of the mind and the transformation of their life. While previous research established the fact that listeners comprehend sermons through their rhetorical appeal, it has been unclear how this has motivated evangelical listeners to act. The purpose of this qualitative narrative study was to explore how the rhetorical appeal of preaching influences evangelical listeners’ motivation at evangelical churches in Savannah, Georgia. A comprehensive approach to exploring a sermon’s rhetorical appeal was utilized by focusing jointly on individual perception and social context. The Narrative Transportation Theory served as the theoretical framework, and 34 participants from six churches were interviewed to reach saturation. The findings showed that the rhetorical appeal embedded in preaching, plus its narrative essence, influences evangelical listener motivation. In addition, listeners subconsciously understand that aspects of rhetoric and narrative work together in sermons to influence their motivation. This study specifically identified three themes, seven categories, 13 conditions, and 32 codes relevant for rhetorical appeal to be effective and to help motivation occur. The three themes of Relatability, Applicability, and Engagement were aligned with Ethos, Logos, and Pathos, and then integrated with Environmental, Cognitive, and Behavioral functions, to create the Sermon Listener Motivation Triangle. This study’s corroboration of preaching’s collaborative nature between the perfectly divine and the imperfectly human is shared in hopes of helping speakers prepare scripturally authentic sermons and communicate in engaging ways that inspire change

    A Hierarchical Security Event Correlation Model for Real-Time Threat Detection and Response

    Get PDF
    An intrusion detection system (IDS) perform postcompromise detection of security breaches whenever preventive measures such as firewalls do not avert an attack. However, these systems raise a vast number of alerts that must be analyzed and triaged by security analysts. This process is largely manual, tedious, and time-consuming. Alert correlation is a technique that reduces the number of intrusion alerts by aggregating alerts that are similar in some way. However, the correlation is performed outside the IDS through third-party systems and tools, after the IDS has already generated a high volume of alerts. These third-party systems add to the complexity of security operations. In this paper, we build on the highly researched area of alert and event correlation by developing a novel hierarchical event correlation model that promises to reduce the number of alerts issued by an intrusion detection system. This is achieved by correlating the events before the IDS classifies them. The proposed model takes the best features from similarity and graph-based correlation techniques to deliver an ensemble capability not possible by either approach separately. Further, we propose a correlation process for events rather than alerts as is the case in the current art. We further develop our own correlation and clustering algorithm which is tailor-made to the correlation and clustering of network event data. The model is implemented as a proof of concept with experiments run on standard intrusion detection sets. The correlation achieves an 87% data reduction through aggregation, producing nearly 21,000 clusters in about 30 s.</jats:p

    Full Issue

    Get PDF

    Information retrieval and machine learning methods for academic expert finding

    Get PDF
    In the context of academic expert finding, this paper investigates and compares the performance of information retrieval (IR) and machine learning (ML) methods, including deep learning, to approach the problem of identifying academic figures who are experts in different domains when a potential user requests their expertise. IR-based methods construct multifaceted textual profiles for each expert by clustering information from their scientific publications. Several methods fully tailored for this problem are presented in this paper. In contrast, ML-based methods treat expert finding as a classification task, training automatic text classifiers using publications authored by experts. By comparing these approaches, we contribute to a deeper understanding of academic-expert-finding techniques and their applicability in knowledge discovery. These methods are tested with two large datasets from the biomedical field: PMSC-UGR and CORD-19. The results show how IR techniques were, in general, more robust with both datasets and more suitable than the ML-based ones, with some exceptions showing good performance.Agencia Estatal de InvestigaciĂłn | Ref. PID2019-106758GB-C31Agencia Estatal de InvestigaciĂłn | Ref. PID2020-113230RB-C22FEDER/Junta de AndalucĂ­a | Ref. A-TIC-146-UGR2

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Machine Unlearning: A Survey

    Full text link
    Machine learning has attracted widespread attention and evolved into an enabling technology for a wide range of highly successful applications, such as intelligent computer vision, speech recognition, medical diagnosis, and more. Yet a special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning. This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality. At the same time, this ambitious problem has led to numerous research efforts aimed at confronting its challenges. To the best of our knowledge, no study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios. Accordingly, with this survey, we aim to capture the key concepts of unlearning techniques. The existing solutions are classified and summarized based on their characteristics within an up-to-date and comprehensive review of each category's advantages and limitations. The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities
    • …
    corecore