97 research outputs found

    Connected And Autonomous Vehicles: Implications For Policy And Practice In City And Transportation Planning

    Get PDF
    Vehicular transportation is undergoing a technological change. Cars are being automated, which have significant implications for governments. Autonomous Vehicles (AVs) and Connected and Autonomous Vehicles (CAVs) can have significant benefits such as improved overall roadside safety and efficiency however, there may also be negative effects as well such as increased sprawl and social inequity. In Ontario, AV testing on public roads has been conducted under O. Reg. 306/15, which has also helped to establish Ontario as a leader of innovation in Canada. Before CAVs can be mass deployed in Ontario and Canada at large however, a number of barriers will need to be addressed such as legislation, infrastructure and cooperation between municipalities, and between municipalities and the automotive industry. Recommendations for municipal and provincial governments are provided

    Development of a Microscopic Traffic Simulator for Inter-Vehicle Communication Application Research

    Get PDF
    This paper describes the development of a microscopic traffic simulator purposely designed for ITS researchers studying inter-vehicle communication (IVC) concepts and applications in large traffic networks. The simulator can represent real life vehicles within the simulation by using data from vehicle Global Positioning System (GPS) receivers, enabling validation of theories with real vehicle data. The software is developed on top of the existing microscopic traffic simulator VISSIM with the added flexibility of modelling and efficiently handling communication between large numbers of vehicles. This along with the software architecture was discussed in detail

    Motion Planning for Autonomous Vehicles in Partially Observable Environments

    Get PDF
    Unsicherheiten, welche aus Sensorrauschen oder nicht beobachtbaren Manöverintentionen anderer Verkehrsteilnehmer resultieren, akkumulieren sich in der Datenverarbeitungskette eines autonomen Fahrzeugs und führen zu einer unvollständigen oder fehlinterpretierten Umfeldrepräsentation. Dadurch weisen Bewegungsplaner in vielen Fällen ein konservatives Verhalten auf. Diese Dissertation entwickelt zwei Bewegungsplaner, welche die Defizite der vorgelagerten Verarbeitungsmodule durch Ausnutzung der Reaktionsfähigkeit des Fahrzeugs kompensieren. Diese Arbeit präsentiert zuerst eine ausgiebige Analyse über die Ursachen und Klassifikation der Unsicherheiten und zeigt die Eigenschaften eines idealen Bewegungsplaners auf. Anschließend befasst sie sich mit der mathematischen Modellierung der Fahrziele sowie den Randbedingungen, welche die Sicherheit gewährleisten. Das resultierende Planungsproblem wird mit zwei unterschiedlichen Methoden in Echtzeit gelöst: Zuerst mit nichtlinearer Optimierung und danach, indem es als teilweise beobachtbarer Markov-Entscheidungsprozess (POMDP) formuliert und die Lösung mit Stichproben angenähert wird. Der auf nichtlinearer Optimierung basierende Planer betrachtet mehrere Manöveroptionen mit individuellen Auftrittswahrscheinlichkeiten und berechnet daraus ein Bewegungsprofil. Er garantiert Sicherheit, indem er die Realisierbarkeit einer zufallsbeschränkten Rückfalloption gewährleistet. Der Beitrag zum POMDP-Framework konzentriert sich auf die Verbesserung der Stichprobeneffizienz in der Monte-Carlo-Planung. Erstens werden Informationsbelohnungen definiert, welche die Stichproben zu Aktionen führen, die eine höhere Belohnung ergeben. Dabei wird die Auswahl der Stichproben für das reward-shaped Problem durch die Verwendung einer allgemeinen Heuristik verbessert. Zweitens wird die Kontinuität in der Reward-Struktur für die Aktionsauswahl ausgenutzt und dadurch signifikante Leistungsverbesserungen erzielt. Evaluierungen zeigen, dass mit diesen Planern große Erfolge in Fahrversuchen und Simulationsstudien mit komplexen Interaktionsmodellen erreicht werden

    Sustainability Analysis Framework for On-Demand Public Transit Systems

    Full text link
    There is an increased interest from transit agencies to replace fixed-route transit services with on-demand public transits (ODT). However, it is still unclear when and where such a service is efficient and sustainable. To this end, we provide a comprehensive framework for assessing the sustainability of ODT systems from the perspective of overall efficiency, environmental footprint, and social equity and inclusion. The proposed framework is illustrated by applying it to the Town of Innisfil, Ontario, where an ODT system has been implemented since 2017. It can be concluded that when there is adequate supply and no surge pricing, crowdsourced ODTs are the most cost-effective transit system when the demand is below 3.37 riders/km2/day. With surge pricing applied to crowdsourced ODTs, hybrid systems become the most cost-effective transit solution when demand ranges between 1.18 and 3.37 riders/km2/day. The use of private vehicles is more environmentally sustainable than providing public transit service at all demand levels below 3.37 riders/km2/day. However, the electrification of the public transit fleet along with optimized charging strategies can reduce total yearly GHG emissions by more than 98%. Furthermore, transit systems have similar equity distributions for waiting and in-vehicle travel times

    Gamification of telematics data to enhance operators’ behaviour for improvement of machine productivity in loading cycles

    Get PDF
    Construction industry is suffering from low productivity rate in various projects such as excavation. Although this issue is discussed in literature and several approaches are proposed to address it, productivity rate is still low in construction industry compared to other domains like manufacturing. Three core components directly affect the overall productivity in construction sector, i.e. labour productivity, raw material productivity, and machine or equipment productivity. With a focus on construction machinery, three factors influence productivity at excavation sites; i.e. 1) machine-based productivity and its configuration, 2) site layout and environmental conditions, and 3) operators’ behaviour. Operators’ competence and motivation represent two key parameters that affect their behaviour. On one side, gamification has attracted a growing area of interest both in literature and practice, seeking to place a layer of entertainment and pleasure to the top of serious activities (with a focus on improving the applicant’s motivation and behaviour). On the other side, telematics systems are utilized to collect operational data of the machine, and calculate its productivity rate. Telematics data are presented to operators (via a built-in screen available in the cabin of the machine) to provide real-time feedback about machine performance. In addition, these data can support machine owners to perceive operators’ behaviour on a real-time basis. To conclude, telematics systems are providing real-time data which can be a great input into gamification. A guideline is proposed in this dissertation that helps gamification designers to develop more transparent gamification models. This guideline is utilized to introduce a gamification model that gamifies telematics data with a focus on enhancing operators’ behaviour (machine productivity) in loading and transferring activities. The model was implemented at two sites(one recycling and one mining site) and could encourage operators (who were operating wheel-loaders and dump-trucks) to prevent redundant activities like texting, phoning, and even eating while operating the machine. Subsequently, it enhanced overall machine productivity up to 37% during the site observation. To summarize, a gamified platform in which different operators from different organizations can share their achievements, or can get scored and ranked in a leader-board will potentially lead to a more proper operators’ behaviour at work and subsequently can improve overall productivity rate at construction sites

    Look Both Ways: Intersections Of Past And Present In The Shaping Of Relations Between Cyclists, Pedestrians, And Driverless Cars

    Get PDF
    Driverless cars are expected to transform society in many ways. Since nowadays most collisions are due to human error, safety is among the most anticipated benefits of the technology. The promise of near zero fatalities on roads appears in many industry statements and government reports. Because of that, every collision, especially involving fatalities, receives much attention from the media and public. That kind of scrutiny resembles the early days of the conventional automobiles. In those days, automobiles – also called “horseless carriages” – were not well received by the majority of the population. Cars brought conflicts and fatalities on roads to a level never seen before. The automobile industry, using public relations, shifted society’s perception about who belongs to the roads, and who should be blamed for the rise of fatalities. That shift influenced legislation and tort law in motor-vehicle centric ways. It also created cities with infrastructure focused on the automobile at the expense of other means of transportation. Today, one of the most difficult challenges for driverless cars is the unpredictability of pedestrian and cyclist behaviour. To accelerate the deployment of the technology, some are considering the necessity of law enforcement against pedestrians and other street users. Centred on urban environments, pedestrians and cyclists, and with an interdisciplinary and advocacy-oriented approach, this thesis seeks to contribute to the debate about the safety and deployment of driverless cars, its influence on law and legislation, and how a car-centred view of the technology may limit its potentialities

    Novel statistical modeling methods for traffic video analysis

    Get PDF
    Video analysis is an active and rapidly expanding research area in computer vision and artificial intelligence due to its broad applications in modern society. Many methods have been proposed to analyze the videos, but many challenging factors remain untackled. In this dissertation, four statistical modeling methods are proposed to address some challenging traffic video analysis problems under adverse illumination and weather conditions. First, a new foreground detection method is presented to detect the foreground objects in videos. A novel Global Foreground Modeling (GFM) method, which estimates a global probability density function for the foreground and applies the Bayes decision rule for model selection, is proposed to model the foreground globally. A Local Background Modeling (LBM) method is applied by choosing the most significant Gaussian density in the Gaussian mixture model to model the background locally for each pixel. In addition, to mitigate the correlation effects of the Red, Green, and Blue (RGB) color space on the independence assumption among the color component images, some other color spaces are investigated for feature extraction. To further enhance the discriminatory power of the input feature vector, the horizontal and vertical Haar wavelet features and the temporal information are integrated into the color features to define a new 12-dimensional feature vector space. Finally, the Bayes classifier is applied for the classification of the foreground and the background pixels. Second, a novel moving cast shadow detection method is presented to detect and remove the cast shadows from the foreground. Specifically, a set of new chromatic criteria is presented to detect the candidate shadow pixels in the Hue, Saturation, and Value (HSV) color space. A new shadow region detection method is then proposed to cluster the candidate shadow pixels into shadow regions. A statistical shadow model, which uses a single Gaussian distribution to model the shadow class, is presented to classify shadow pixels. Additionally, an aggregated shadow detection strategy is presented to integrate the shadow detection results and remove the shadows from the foreground. Third, a novel statistical modeling method is presented to solve the automated road recognition problem for the Region of Interest (RoI) detection in traffic video analysis. A temporal feature guided statistical modeling method is proposed for road modeling. Additionally, a model pruning strategy is applied to estimate the road model. Then, a new road region detection method is presented to detect the road regions in the video. The method applies discriminant functions to classify each pixel in the estimated background image into a road class or a non-road class, respectively. The proposed method provides an intra-cognitive communication mode between the RoI selection and video analysis systems. Fourth, a novel anomalous driving detection method in videos, which can detect unsafe anomalous driving behaviors is introduced. A new Multiple Object Tracking (MOT) method is proposed to extract the velocities and trajectories of moving foreground objects in video. The new MOT method is a motion-based tracking method, which integrates the temporal and spatial features. Then, a novel Gaussian Local Velocity (GLV) modeling method is presented to model the normal moving behavior in traffic videos. The GLV model is built for every location in the video frame, and updated online. Finally, a discriminant function is proposed to detect anomalous driving behaviors. To assess the feasibility of the proposed statistical modeling methods, several popular public video datasets, as well as the real traffic videos from the New Jersey Department of Transportation (NJDOT) are applied. The experimental results show the effectiveness and feasibility of the proposed methods

    Gamification of telematics data to enhance operators’ behaviour for improvement of machine productivity in loading cycles

    Get PDF
    Construction industry is suffering from low productivity rate in various projects such as excavation. Although this issue is discussed in literature and several approaches are proposed to address it, productivity rate is still low in construction industry compared to other domains like manufacturing. A gamified platform in which different operators from different organizations can share their achievements, or can get scored and ranked in a leader-board will potentially address this issue

    Short-Term Travel Time Prediction on Freeways

    Get PDF
    Short-term travel time prediction supports the implementation of proactive traffic management and control strategies to alleviate if not prevent congestion and enable rational route choices and traffic mode selections to enhance travel mobility and safety. Over the last decade, Bluetooth technology has been increasingly used in collecting travel time data due to the technology’s advantages over conventional detection techniques in terms of direct travel time measurement, anonymous detection, and cost-effectiveness. However, similar to many other Automatic Vehicle Identification (AVI) technologies, Bluetooth technology has some limitations in measuring travel time information including 1) Bluetooth technology cannot associate travel time measurements with different traffic streams or facilities, therefore, the facility-specific travel time information is not directly available from Bluetooth measurements; 2) Bluetooth travel time measurements are influenced by measurement lag, because the travel time associated with vehicles that have not reached the downstream Bluetooth detector location cannot be taken at the instant of analysis. Freeway sections may include multiple distinct traffic stream (i.e., facilities) moving in the same direction of travel under a number of scenarios including: (1) a freeway section that contain both a High Occupancy Vehicle (HOV) or High Occupancy Toll (HOT) lane and several general purpose lanes (GPL); (2) a freeway section with a nearby parallel service roadway; (3) a freeway section in which there exist physically separated lanes (e.g. express versus collector lanes); or (4) a freeway section in which a fraction of the lanes are used by vehicles to access an off ramp. In this research, two different methods were proposed in estimating facility-specific travel times from Bluetooth measurements. Method 1 applies the Anderson-Darling test in matching the distribution of real-time Bluetooth travel time measurements with reference measurements. Method 2 first clusters the travel time measurements using the K-means algorithm, and then associates the clusters with facilities using traffic flow model. The performances of these two proposed methods have been evaluated against a Benchmark method using simulation data. A sensitivity analysis was also performed to understand the impacts of traffic conditions on the performance of different models. Based on the results, Method 2 is recommended when the physical barriers or law enforcement prevent drivers from freely switching between the underlying facilities; however, when the roadway functions as a self-correcting system allowing vehicles to freely switching between underlying facilities, the Benchmark method, which assumes one facility always operating faster than the other facility, is recommended for application. The Bluetooth travel time measurement lag leads to delayed detection of traffic condition variations and travel time changes, especially during congestion and transition periods or when consecutive Bluetooth detectors are placed far apart. In order to alleviate the travel time measurement lag, this research proposed to use non-lagged Bluetooth measurements (e.g., the number of repetitive detections for each vehicle and the time a vehicle spent in the detection zone) for inferring traffic stream states in the vicinity of the Bluetooth detectors. Two model structures including the analytical model and the statistical model have been proposed to estimate the traffic conditions based on non-lagged Bluetooth measurements. The results showed that the proposed RUSBoost classification tree achieved over 94% overall accuracy in predicting traffic conditions as congested or uncongested. When modeling traffic conditions as three traffic states (i.e., the free-flow state, the transition state, and the congested state) using the RUSBoost classification tree, the overall accuracy was 67.2%; however, the accuracy in predicting the congested traffic state was improved from 84.7% of the two state model to 87.7%. Because traffic state information enables the travel time prediction model to more timely detect the changes in traffic conditions, both the two-state model and the three-state model have been evaluated in developing travel time prediction models in this research. The Random Forest model was the main algorithm adopted in training travel time prediction models using both travel time measurements and inferred traffic states. Using historical Bluetooth data as inputs, the model results proved that the inclusion of traffic states information consistently lead to better travel time prediction results in terms of lower root mean square errors (improved by over 11%), lower 90th percentile absolute relative error ARE (improved by over 12%), and lower standard deviations of ARE (improved by over 15%) compared to other model structures without traffic states as inputs. In addition, the impact of traffic state inclusion on travel time prediction accuracy as a function of Bluetooth detector spacing was also examined using simulation data. The results showed that the segment length of 4~8 km is optimal in terms of the improvement from using traffic state information in travel time prediction models
    • …
    corecore