3,780 research outputs found

    Deep Time-Series Clustering: A Review

    Get PDF
    We present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a case study in the context of movement behavior clustering utilizing the deep clustering method. Specifically, we modified the DCAE architectures to suit time-series data at the time of our prior deep clustering work. Lately, several works have been carried out on deep clustering of time-series data. We also review these works and identify state-of-the-art, as well as present an outlook on this important field of DTSC from five important perspectives

    Visually-Enabled Active Deep Learning for (Geo) Text and Image Classification: A Review

    Get PDF
    This paper investigates recent research on active learning for (geo) text and image classification, with an emphasis on methods that combine visual analytics and/or deep learning. Deep learning has attracted substantial attention across many domains of science and practice, because it can find intricate patterns in big data; but successful application of the methods requires a big set of labeled data. Active learning, which has the potential to address the data labeling challenge, has already had success in geospatial applications such as trajectory classification from movement data and (geo) text and image classification. This review is intended to be particularly relevant for extension of these methods to GISience, to support work in domains such as geographic information retrieval from text and image repositories, interpretation of spatial language, and related geo-semantics challenges. Specifically, to provide a structure for leveraging recent advances, we group the relevant work into five categories: active learning, visual analytics, active learning with visual analytics, active deep learning, plus GIScience and Remote Sensing (RS) using active learning and active deep learning. Each category is exemplified by recent influential work. Based on this framing and our systematic review of key research, we then discuss some of the main challenges of integrating active learning with visual analytics and deep learning, and point out research opportunities from technical and application perspectives-for application-based opportunities, with emphasis on those that address big data with geospatial components

    A Survey of Smart Classroom Literature

    Get PDF
    Recently, there has been a substantial amount of research on smart classrooms, encompassing a number of areas, including Information and Communication Technology, Machine Learning, Sensor Networks, Cloud Computing, and Hardware. Smart classroom research has been quickly implemented to enhance education systems, resulting in higher engagement and empowerment of students, educators, and administrators. Despite decades of using emerging technology to improve teaching practices, critics often point out that methods miss adequate theoretical and technical foundations. As a result, there have been a number of conflicting reviews on different perspectives of smart classrooms. For a realistic smart classroom approach, a piecemeal implementation is insufficient. This survey contributes to the current literature by presenting a comprehensive analysis of various disciplines using a standard terminology and taxonomy. This multi-field study reveals new research possibilities and problems that must be tackled in order to integrate interdisciplinary works in a synergic manner. Our analysis shows that smart classroom is a rapidly developing research area that complements a number of emerging technologies. Moreover, this paper also describes the co-occurrence network of technological keywords using VOSviewer for an in-depth analysis

    A Closer Look into Recent Video-based Learning Research: A Comprehensive Review of Video Characteristics, Tools, Technologies, and Learning Effectiveness

    Full text link
    People increasingly use videos on the Web as a source for learning. To support this way of learning, researchers and developers are continuously developing tools, proposing guidelines, analyzing data, and conducting experiments. However, it is still not clear what characteristics a video should have to be an effective learning medium. In this paper, we present a comprehensive review of 257 articles on video-based learning for the period from 2016 to 2021. One of the aims of the review is to identify the video characteristics that have been explored by previous work. Based on our analysis, we suggest a taxonomy which organizes the video characteristics and contextual aspects into eight categories: (1) audio features, (2) visual features, (3) textual features, (4) instructor behavior, (5) learners activities, (6) interactive features (quizzes, etc.), (7) production style, and (8) instructional design. Also, we identify four representative research directions: (1) proposals of tools to support video-based learning, (2) studies with controlled experiments, (3) data analysis studies, and (4) proposals of design guidelines for learning videos. We find that the most explored characteristics are textual features followed by visual features, learner activities, and interactive features. Text of transcripts, video frames, and images (figures and illustrations) are most frequently used by tools that support learning through videos. The learner activity is heavily explored through log files in data analysis studies, and interactive features have been frequently scrutinized in controlled experiments. We complement our review by contrasting research findings that investigate the impact of video characteristics on the learning effectiveness, report on tasks and technologies used to develop tools that support learning, and summarize trends of design guidelines to produce learning video

    Visual Analysis of Engineers' Biographies and Engineering Branches

    Get PDF
    The Prosopographic Database of German Engineers 1825–1970 contains a multitude of biographical information. Given a set of research interests by collaborating historians, this paper discusses the steps undertaken (1) to extract engineering subjects from unstructured text entries in the database accompanied with geospatial and temporal information, (2) to adapt existing visual representations to facilitate exploratory analyses, and (3) to design a visual interface to support the interactive composition of engineering branches from engineering subjects to enable the comparative analysis of geospatial-temporal developments in engineering. Usage scenarios outline the benefit of the proposed visualizations for modern prosopography research

    Visualising Business Data: A Survey

    Get PDF
    A rapidly increasing number of businesses rely on visualisation solutions for their data management challenges. This demand stems from an industry-wide shift towards data-driven approaches to decision making and problem-solving. However, there is an overwhelming mass of heterogeneous data collected as a result. The analysis of these data become a critical and challenging part of the business process. Employing visual analysis increases data comprehension thus enabling a wider range of users to interpret the underlying behaviour, as opposed to skilled but expensive data analysts. Widening the reach to an audience with a broader range of backgrounds creates new opportunities for decision making, problem-solving, trend identification, and creative thinking. In this survey, we identify trends in business visualisation and visual analytic literature where visualisation is used to address data challenges and identify areas in which industries use visual design to develop their understanding of the business environment. Our novel classification of literature includes the topics of businesses intelligence, business ecosystem, customer-centric. This survey provides a valuable overview and insight into the business visualisation literature with a novel classification that highlights both mature and less developed research directions

    Supporting Methodology Transfer in Visualization Research with Literature-Based Discovery and Visual Text Analytics

    Get PDF
    [ES] La creciente especialización de la ciencia está motivando la rápida fragmentación de disciplinas bien establecidas en comunidades interdisciplinares. Esta descom- posición se puede observar en un tipo de investigación en visualización conocida como investigación de visualización dirigida por el problema. En ella, equipos de expertos en visualización y un dominio concreto, colaboran en un área específica de conocimiento como pueden ser las humanidades digitales, la bioinformática, la seguridad informática o las ciencias del deporte. Esta tesis propone una serie de métodos inspirados en avances recientes en el análisis automático de textos y la rep- resentación del conocimiento para promover la adecuada comunicación y transferen- cia de conocimiento entre estas comunidades. Los métodos obtenidos se combinaron en una interfaz de análisis visual de textos orientada al descubrimiento científico, GlassViz, que fue diseñada con estos objetivos en mente. La herramienta se probó por primera vez en el dominio de las humanidades digitales para explorar un corpus masivo de artículos de visualización de propósito general. GlassViz fue adaptada en un estudio posterior para que soportase diferentes fuentes de datos representativas de estas comunidades, mostrando evidencia de que el enfoque propuesto también es una alternativa válida para abordar el problema de la fragmentación en la investigación en visualización

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions

    Automatic generation of software interfaces for supporting decisionmaking processes. An application of domain engineering & machine learning

    Get PDF
    [EN] Data analysis is a key process to foster knowledge generation in particular domains or fields of study. With a strong informative foundation derived from the analysis of collected data, decision-makers can make strategic choices with the aim of obtaining valuable benefits in their specific areas of action. However, given the steady growth of data volumes, data analysis needs to rely on powerful tools to enable knowledge extraction. Information dashboards offer a software solution to analyze large volumes of data visually to identify patterns and relations and make decisions according to the presented information. But decision-makers may have different goals and, consequently, different necessities regarding their dashboards. Moreover, the variety of data sources, structures, and domains can hamper the design and implementation of these tools. This Ph.D. Thesis tackles the challenge of improving the development process of information dashboards and data visualizations while enhancing their quality and features in terms of personalization, usability, and flexibility, among others. Several research activities have been carried out to support this thesis. First, a systematic literature mapping and review was performed to analyze different methodologies and solutions related to the automatic generation of tailored information dashboards. The outcomes of the review led to the selection of a modeldriven approach in combination with the software product line paradigm to deal with the automatic generation of information dashboards. In this context, a meta-model was developed following a domain engineering approach. This meta-model represents the skeleton of information dashboards and data visualizations through the abstraction of their components and features and has been the backbone of the subsequent generative pipeline of these tools. The meta-model and generative pipeline have been tested through their integration in different scenarios, both theoretical and practical. Regarding the theoretical dimension of the research, the meta-model has been successfully integrated with other meta-model to support knowledge generation in learning ecosystems, and as a framework to conceptualize and instantiate information dashboards in different domains. In terms of the practical applications, the focus has been put on how to transform the meta-model into an instance adapted to a specific context, and how to finally transform this later model into code, i.e., the final, functional product. These practical scenarios involved the automatic generation of dashboards in the context of a Ph.D. Programme, the application of Artificial Intelligence algorithms in the process, and the development of a graphical instantiation platform that combines the meta-model and the generative pipeline into a visual generation system. Finally, different case studies have been conducted in the employment and employability, health, and education domains. The number of applications of the meta-model in theoretical and practical dimensions and domains is also a result itself. Every outcome associated to this thesis is driven by the dashboard meta-model, which also proves its versatility and flexibility when it comes to conceptualize, generate, and capture knowledge related to dashboards and data visualizations
    corecore