282,430 research outputs found

    Combined Scheduling of Time-Triggered Plans and Priority Scheduled Task Sets

    Full text link
    © Owner/Author (2016). This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM SIGAda Ada Letters, 36(1), 68-76, http://dx.doi.org/10.1145/10.1145/2971571.2971580.[EN] Preemptive, priority-based scheduling on the one hand, and time-triggered scheduling on the other, are the two major techniques in use for development of real-time and embedded software. Both have their advantages and drawbacks with respect to the other, and are commonly adopted in mutual exclusion. In a previous paper, we proposed a software architecture that enables the combined and controlled execution of time-triggered plans and priority-scheduled tasks. The goal was to take advantage of the best of both approaches by providing deterministic, jitter-controlled execution of time-triggered tasks (e.g., control tasks), coexisting with a set of priority-scheduled tasks, with less demanding jitter requirements. In this paper, we briefly describe the approach, in which the time-triggered plan is executed at the highest priority level, controlled by scheduling decisions taken only at particular points in time, signalled by recurrent timing events. The rest of priority levels are used by a set of concurrent tasks scheduled by static or dynamic priorities. We also discuss several open issues such as schedulability analysis, use of the approach in multiprocessor architectures, usability in mixed-criticality systems and needed changes to make this approach Ravenscar compliant.This work has been partly supported by the Spanish Government’s project M2C2 (TIN2014-56158-C4-1-P-AR) and the European Commission’s project EMC2 (ARTEMIS-JU Call 2013 AIPP-5, Contract 621429).Real Sáez, JV.; Sáez Barona, S.; Crespo Lorente, A. (2016). Combined Scheduling of Time-Triggered Plans and Priority Scheduled Task Sets. Ada Letters. 36(1):68-76. https://doi.org/10.1145/2971571.2971580S6876361T. P. Baker and A. Shaw. The cyclic executive model and Ada. In Proceedings IEEE Real Time Systems Symposium 1988, Huntsville, Alabama, pages 120--129, 1988.P. Balbastre, I. Ripoll, J. Vidal, and A. Crespo. A Task Model to Reduce Control Delays. Real-Time Systems, 27(3):215--236, September 2004.A. Burns and R. Davis. Mixed Criticality Systems - A Review. Technical report, Depatment of Computer Science, University of York, 2013.A. Cervin. Integrated Control and Real-Time Scheduling. PhD thesis, Lund Institute of Technology, April 2003.R. Dobrin. Combining Offline Schedule Construction and Fixed Priority Scheduling in Real-Time Computer Systems. PhD thesis, Mälardalen University, 2005.S. Hong, X. Hu, and M. Lemmon. Reducing Delay Jitter of Real-Time Control Tasks through Adaptive Deadline Adjustments. In IEEE Computer Society, editor, 22nd Euromicro Conference on Real-Time Systems -- ECRTS, pages 229--238, 2010.J. W. S. Liu. Real-Time Systems. Prentice-Hall Inc., 2000.J. Palencia and M. González-Harbour. Schedulability Analysis for Tasks with Static and Dynamic Offsets. In 9th IEEE Real-Time Systems Symposium, 1998.M. J. Pont. The Engineering of Reliable Embedded Systems: LPC1769 edition. Number ISBN: 978-0-9930355-0-0. SafeTTy Systems Limited, 2014.J. Real and A. Crespo. Incorporating Operating Modes to an Ada Real-Time Framework. Ada Letters, 30(1):73--85, April 2010.J. Real, S. Sáez, and A. Crespo. Combining time-triggered plans with priority scheduled task sets. In M. Bertogna and L. M. Pinho, editors, Reliable Software Technologies -- Ada-Europe 2016, volume 9695 of Lecture Notes in Computer Science. Springer, June 2016.S. Sáez, J. Real, and A. Crespo. An integrated framework for multiprocessor, multimoded real-time applications. In M. Brorsson and L. Pinho, editors, Reliable Software Technologies -- Ada-Europe 2012, volume 7308, pages 18--34. Springer-Verlag, June 2012.S. Sáez, J. Real, and A. Crespo. Implementation of Timing-Event Anities in Ada/Linux. Ada Letters, 35(1), April 2015.A. J. Wellings and A. Burns. A Framework for Real-Time Utilities for Ada 2005. Ada Letters, XXVII(2), August 2007

    Security in Wireless Sensor Networks: Issues and Challenges

    Get PDF
    Wireless Sensor Network (WSN) is an emerging technology that shows great promise for various futuristic applications both for mass public and military. The sensing technology combined with processing power and wireless communication makes it lucrative for being exploited in abundance in future. The inclusion of wireless communication technology also incurs various types of security threats. The intent of this paper is to investigate the security related issues and challenges in wireless sensor networks. We identify the security threats, review proposed security mechanisms for wireless sensor networks. We also discuss the holistic view of security for ensuring layered and robust security in wireless sensor networks.Comment: 6 page

    Real-time agreement and fulfilment of SLAs in Cloud Computing environments

    Full text link
    A Cloud Computing system must readjust its resources by taking into account the demand for its services. This raises the need for designing protocols that provide the individual components of the Cloud architecture with the ability to self-adapt and to reach agreements in order to deal with changes in the services demand. Furthermore, if the Cloud provider has signed a Service Level Agreement (SLA) with the clients of the services that it offers, the appropriate agreement mechanism has to ensure the provision of the service contracted within a specified time. This paper introduces real-time mechanisms for the agreement and fulfilment of SLAs in Cloud Computing environments. On the one hand, it presents a negotiation protocol inspired by the standard WSAgreement used in web services to manage the interactions between the client and the Cloud provider to agree the terms of the SLA of a service. On the other hand, it proposes the application of a real-time argumentation framework for redistributing resources and ensuring the fulfilment of these SLAs during peaks in the service demand.This work is supported by the Spanish government Grants CONSOLIDER-INGENIO 2010 CSD2007-00022, TIN2011-27652-C03-01, TIN2012-36586-C03-01 and TIN2012-36586-C03-03.De La Prieta, F.; Heras Barberá, SM.; Palanca Cámara, J.; Rodríguez, S.; Bajo, J.; Julian Inglada, VJ. (2014). Real-time agreement and fulfilment of SLAs in Cloud Computing environments. AI Communications. 1-24. doi:10.3233/AIC-140626S124[1]V. Aleven and K.D. Ashley, Teaching case-based argumentation through a model and examples, empirical evaluation of an intelligent learning environment, in: Artificial Intelligence in Education, AIED-97, Frontiers in Artificial Intelligence and Applications, Vol. 39, IOS Press, 1997, pp. 87–94.[2]M. Alhamad, W. Perth, T. Dillon and E. Chang, Conceptual SLA framework for cloud computing, in: 4th IEEE International Conference on Digital Ecosystems and Technologies (DEST), IEEE Press, 2010, pp. 606–610.Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A. D., … Rabkin, A. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50. doi:10.1145/1721654.1721672Ashley, K. D. (1991). Reasoning with cases and hypotheticals in HYPO. International Journal of Man-Machine Studies, 34(6), 753-796. doi:10.1016/0020-7373(91)90011-u[6]P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt and A. Warfield, Xen and the art of virtualization, in: 9th ACM Symposium on Operating Systems Principles (SOSP-03), ACM Press, 2003, pp. 164–177.Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. Future Generation Computer Systems, 28(5), 755-768. doi:10.1016/j.future.2011.04.017[8]A. Beloglazov and R. Buyya, Energy efficient allocation of virtual machines in cloud data centers, in: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, IEEE Computer Society, 2010, pp. 577–578.[9]A. Beloglazov and R. Buyya, Energy efficient resource management in virtualized cloud data centers, in: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, IEEE Computer Society, 2010, pp. 826–831.Bench-Capon, T., & Sartor, G. (2003). A model of legal reasoning with cases incorporating theories and values. Artificial Intelligence, 150(1-2), 97-143. doi:10.1016/s0004-3702(03)00108-5[11]T.J. Bench-Capon, Specification and implementation of Toulmin dialogue game, in: International Conferences on Legal Knowledge and Information Systems, JURIX-98, Frontiers of Artificial Intelligence and Applications, IOS Press, 1998, pp. 5–20.[12]R. Buyya, R. Ranjan and R.N. Calheiros, Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services, in: 10th International Conference on Algorithms and Architectures for Parallel Processing – Volume Part I, ICA3PP’10, Springer-Verlag, 2010, pp. 13–31.[13]R. Buyya, C.S. Yeo and S. Venugopal, Market-oriented cloud computing: Vision, hype, and reality for delivering it services as computing utilities, in: High Performance Computing and Communications, 2008. HPCC’08. 10th IEEE International Conference, September 2008, IEEE, 2008, pp. 5–13.Chen, C., Li, S. S., Chen, B., & Wen, D. (2011). Agent Recommendation for Agent-Based Urban-Transportation Systems. IEEE Intelligent Systems, 26(6), 77-81. doi:10.1109/mis.2011.94[15]Y.Y. Cheng, M. Low, S. Zhou, W. Cai and C.S. Choo, Evolving agent-based simulations in the clouds, in: 3rd International Workshop on Advanced Computational Intelligence (IWACI), 2010, pp. 244–249.[16]F. Dignum and H. Weigand, Communication and Deontic Logic, in: Information Systems – Correctness and Reusability. Selected Papers from the IS-CORE Workshop, R. Wieringa and R. Feenstra, eds, World Scientific Publishing Co., 1995, pp. 242–260.Erdogmus, H. (2009). Cloud Computing: Does Nirvana Hide behind the Nebula? IEEE Software, 26(2), 4-6. doi:10.1109/ms.2009.31[19]J.O. Fitó, I. Goiri and J. Guitart, SLA-driven elastic cloud hosting provider, in: 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), IEEE Computer Society, 2010, pp. 111–118.Fuentes-Fernández, R., Hassan, S., Pavón, J., Galán, J. M., & López-Paredes, A. (2012). Metamodels for role-driven agent-based modelling. Computational and Mathematical Organization Theory, 18(1), 91-112. doi:10.1007/s10588-012-9110-5Heras, S., Botti, V., & Julián, V. (2009). Challenges for a CBR framework for argumentation in open MAS. The Knowledge Engineering Review, 24(4), 327-352. doi:10.1017/s0269888909990178Heras, S., Jordán, J., Botti, V., & Julián, V. (2013). Argue to agree: A case-based argumentation approach. International Journal of Approximate Reasoning, 54(1), 82-108. doi:10.1016/j.ijar.2012.06.005[24]M. Jensen, J. Schwenk, N. Gruschka and L. Iacono, On technical security issues in cloud computing, in: IEEE International Conference on Cloud Computing, IEEE Press, 2009, pp. 109–116.Kakas, A., Maudet, N., & Moraitis, P. (2005). Modular Representation of Agent Interaction Rules through Argumentation. Autonomous Agents and Multi-Agent Systems, 11(2), 189-206. doi:10.1007/s10458-005-2176-4[26]M.J. Kim, H.G. Yoon and H.K. Lee, MAV: An intelligent Multi-agent model based on Cloud computing for resource virtualization, in: Computers, Networks, Systems, and Industrial Engineering, Studies in Computational Intelligence, Vol. 365, Springer, 2011, pp. 99–111.Kraus, S., Sycara, K., & Evenchik, A. (1998). Reaching agreements through argumentation: a logical model and implementation. Artificial Intelligence, 104(1-2), 1-69. doi:10.1016/s0004-3702(98)00078-2[28]W.-Y. Lin, G.-Y. Lin and H.-Y. Wei, Dynamic auction mechanism for cloud resource allocation, in: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGRID’10, IEEE Computer Society, Washington, DC, USA, 2010, pp. 591–592.[29]S. Liu, G. Quan and S. Ren, On-line scheduling of real-time services for cloud computing, in: 6th World Congress on Services, SERVICES’10, IEEE Computer Society, 2010, pp. 459–464.Navarro, M., Heras, S., Botti, V., & Julián, V. (2013). Towards real-time agreements. Expert Systems with Applications, 40(10), 3906-3917. doi:10.1016/j.eswa.2012.12.087Ontañón, S., & Plaza, E. (2011). An argumentation framework for learning, information exchange, and joint-deliberation in multi-agent systems1. Multiagent and Grid Systems, 7(2-3), 95-108. doi:10.3233/mgs-2011-0169Palanca, J., Navarro, M., García-Fornes, A., & Julian, V. (2013). Deadline prediction scheduling based on benefits. Future Generation Computer Systems, 29(1), 61-73. doi:10.1016/j.future.2012.05.007[33]C. Pautasso, O. Zimmermann and F. Leymann, Restful web services vs. “big”’ web services: making the right architectural decision, in: Proceedings of the 17th International Conference on World Wide Web, WWW’08, ACM, New York, NY, USA, 2008, pp. 805–814.[34]J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang and Q. Li, Comparison of several cloud computing platforms, in: 2nd International Symposium on Information Science and Engineering, ISISE’09, IEEE Computer Society, 2009, pp. 23–27.Prakken, H., & Sartor, G. (1998). Artificial Intelligence and Law, 6(2/4), 231-287. doi:10.1023/a:1008278309945[36]I. Rahwan and G. Simari, eds, Argumentation in Artificial Intelligence, Springer, 2009.Ross, J. W., & Westerman, G. (2004). Preparing for utility computing: The role of IT architecture and relationship management. IBM Systems Journal, 43(1), 5-19. doi:10.1147/sj.431.0005Schaffer, H. E. (2009). X as a Service, Cloud Computing, and the Need for Good Judgment. IT Professional, 11(5), 4-5. doi:10.1109/mitp.2009.112[39]K.M. Sim, Agent-based cloud commerce, in: IEEE International Conference on Industrial Engineering and Engineering Management, IEEE Press, 2009, pp. 717–721.Soh, L.-K., & Tsatsoulis, C. (2005). A Real-Time Negotiation Model and A Multi-Agent Sensor Network Implementation. Autonomous Agents and Multi-Agent Systems, 11(3), 215-271. doi:10.1007/s10458-005-0539-5Talia, D. (2012). Clouds Meet Agents: Toward Intelligent Cloud Services. IEEE Internet Computing, 16(2), 78-81. doi:10.1109/mic.2012.28Tolchinsky, P., Modgil, S., Atkinson, K., McBurney, P., & Cortés, U. (2011). Deliberation dialogues for reasoning about safety critical actions. Autonomous Agents and Multi-Agent Systems, 25(2), 209-259. doi:10.1007/s10458-011-9174-5[44]A. Toniolo, T. Norman and K. Sycara, An empirical study of argumentation schemes in deliberative dialogue, in: 20th European Conference on Artificial Intelligence, ECAI-12, Frontiers in Artificial Intelligence and Applications, Vol. 242, IOS Press, 2012, pp. 756–761.[45]W.-T. Tsai, Q. Shao, X. Sun and J. Elston, Real-time service-oriented cloud computing, in: IEEE 6th World Congress on Services, SERVICES’10, IEEE Press, 2010, pp. 473–478.[46]D. Walton, C. Reed and F. Macagno, Argumentation Schemes, Cambridge University Press, 2008.[47]L. Wang, J. Tao, M. Kunze, A. Castellanos, D. Kramer and W. Karl, Scientific cloud computing: Early definition and experience, in: 10th IEEE International Conference on High Performance Computing and Communications (HPCC-08), IEEE Press, 2008, pp. 825–830.[48]Y.O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti and Y. Coady, Dynamic resource allocation in computing clouds using distributed multiple criteria decision analysis, in: IEEE 3rd International Conference on Cloud Computing (CLOUD), IEEE Computer Society, 2010, pp. 91–98.[49]Y. Yu, S. Ren, N. Chen and X. Wang, Profit and penalty aware (pp-aware) scheduling for tasks with variable task execution time, in: ACM Symposium on Applied Computing, SAC’10, ACM, 2010, pp. 334–339
    • …
    corecore