574 research outputs found

    Semi-quantum communication: Protocols for key agreement, controlled secure direct communication and dialogue

    Full text link
    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Further, it addresses a fundamental question in context of a large number problems- how much quantumness is (how many quantum parties are) required to perform a specific secure communication task? Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate-coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.Comment: 19 pages 1 figur

    Asymmetric Quantum Dialogue in Noisy Environment

    Full text link
    A notion of asymmetric quantum dialogue (AQD) is introduced. Conventional protocols of quantum dialogue are essentially symmetric as both the users (Alice and Bob) can encode the same amount of classical information. In contrast, the scheme for AQD introduced here provides different amount of communication powers to Alice and Bob. The proposed scheme, offers an architecture, where the entangled state and the encoding scheme to be shared between Alice and Bob depends on the amount of classical information they want to exchange with each other. The general structure for the AQD scheme has been obtained using a group theoretic structure of the operators introduced in (Shukla et al., Phys. Lett. A, 377 (2013) 518). The effect of different types of noises (e.g., amplitude damping and phase damping noise) on the proposed scheme is investigated, and it is shown that the proposed AQD is robust and uses optimized amount of quantum resources.Comment: 11 pages, 2 figure

    On intrinsically knotted or completely 3-linked graphs

    Full text link
    We say that a graph is intrinsically knotted or completely 3-linked if every embedding of the graph into the 3-sphere contains a nontrivial knot or a 3-component link any of whose 2-component sublink is nonsplittable. We show that a graph obtained from the complete graph on seven vertices by a finite sequence of â–³Y\triangle Y-exchanges and Yâ–³Y \triangle-exchanges is a minor-minimal intrinsically knotted or completely 3-linked graph.Comment: 17 pages, 9 figure

    Security of quantum key distribution with iterative sifting

    Full text link
    Several quantum key distribution (QKD) protocols employ iterative sifting. After each quantum transmission round, Alice and Bob disclose part of their setting information (including their basis choices) for the detected signals. The quantum phase of the protocol then ends when the numbers of detected signals per basis exceed certain pre-agreed threshold values. Recently, however, Pfister et al. [New J. Phys. 18 053001 (2016)] showed that iterative sifting makes QKD insecure, especially in the finite key regime, if the parameter estimation for privacy amplification uses the random sampling theory. This implies that a number of existing finite key security proofs could be flawed and cannot guarantee security. Here, we solve this serious problem by showing that the use of Azuma's inequality for parameter estimation makes QKD with iterative sifting secure again. This means that the existing protocols whose security proof employs this inequality remain secure even if they employ iterative sifting. Also, our results highlight a fundamental difference between the random sampling theorem and Azuma's inequality in proving security.Comment: 9 pages. We have found a flaw in the first version, which we have corrected in the revised versio

    Perfect domination in regular grid graphs

    Full text link
    We show there is an uncountable number of parallel total perfect codes in the integer lattice graph Λ{\Lambda} of R2\R^2. In contrast, there is just one 1-perfect code in Λ{\Lambda} and one total perfect code in Λ{\Lambda} restricting to total perfect codes of rectangular grid graphs (yielding an asymmetric, Penrose, tiling of the plane). We characterize all cycle products Cm×CnC_m\times C_n with parallel total perfect codes, and the dd-perfect and total perfect code partitions of Λ{\Lambda} and Cm×CnC_m\times C_n, the former having as quotient graph the undirected Cayley graphs of Z2d2+2d+1\Z_{2d^2+2d+1} with generator set {1,2d2}\{1,2d^2\}. For r>1r>1, generalization for 1-perfect codes is provided in the integer lattice of Rr\R^r and in the products of rr cycles, with partition quotient graph K2r+1K_{2r+1} taken as the undirected Cayley graph of Z2r+1\Z_{2r+1} with generator set {1,...,r}\{1,...,r\}.Comment: 16 pages; 11 figures; accepted for publication in Austral. J. Combi
    • …
    corecore