153 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios

    Full text link
    Connectivity is probably the most basic building block of the Internet of Things (IoT) paradigm. Up to know, the two main approaches to provide data access to the \emph{things} have been based either on multi-hop mesh networks using short-range communication technologies in the unlicensed spectrum, or on long-range, legacy cellular technologies, mainly 2G/GSM, operating in the corresponding licensed frequency bands. Recently, these reference models have been challenged by a new type of wireless connectivity, characterized by low-rate, long-range transmission technologies in the unlicensed sub-GHz frequency bands, used to realize access networks with star topology which are referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we introduce this new approach to provide connectivity in the IoT scenario, discussing its advantages over the established paradigms in terms of efficiency, effectiveness, and architectural design, in particular for the typical Smart Cities applications

    Low-Power Wireless for the Internet of Things: Standards and Applications: Internet of Things, IEEE 802.15.4, Bluetooth, Physical layer, Medium Access Control,coexistence, mesh networking, cyber-physical systems, WSN, M2M

    Get PDF
    International audienceThe proliferation of embedded systems, wireless technologies, and Internet protocols have enabled the Internet of Things (IoT) to bridge the gap between the virtual and physical world through enabling the monitoring and actuation of the physical world controlled by data processing systems. Wireless technologies, despite their offered convenience, flexibility, low cost, and mobility pose unique challenges such as fading, interference, energy, and security, which must be carefully addressed when using resource-constrained IoT devices. To this end, the efforts of the research community have led to the standardization of several wireless technologies for various types of application domains depending on factors such as reliability, latency, scalability, and energy efficiency. In this paper, we first overview these standard wireless technologies, and we specifically study the MAC and physical layer technologies proposed to address the requirements and challenges of wireless communications. Furthermore, we explain the use of these standards in various application domains, such as smart homes, smart healthcare, industrial automation, and smart cities, and discuss their suitability in satisfying the requirements of these applications. In addition to proposing guidelines to weigh the pros and cons of each standard for an application at hand, we also examine what new strategies can be exploited to overcome existing challenges and support emerging IoT applications

    On a test-bed application for the ART-WiSe framework

    Get PDF
    This report describes the development of a Test-bed Application for the ART-WiSe Framework with the aim of providing a means of access, validate and demonstrate that architecture. The chosen application is a kind of pursuit-evasion game where a remote controlled robot, navigating through an area covered by wireless sensor network (WSN), is detected and continuously tracked by the WSN. Then a centralized control station takes the appropriate actions for a pursuit robot to chase and “capture” the intruder one. This kind of application imposes stringent timing requirements to the underlying communication infrastructure. It also involves interesting research problems in WSNs like tracking, localization, cooperation between nodes, energy concerns and mobility. Additionally, it can be easily ported into a real-world application. Surveillance or search and rescue operations are two examples where this kind of functionality can be applied. This is still a first approach on the test-bed application and this development effort will be continuously pushed forward until all the envisaged objectives for the Art-WiSe architecture become accomplished

    Development of a wireless sensor network for agricultural monitoring for Internet of Things (IoT)

    Get PDF
    Monitoring of the agricultural environment has become an important area of control and protection which provides real-time system and control communication with the physical world. This thesis focuses on Development ofa wireless Sensor Network for agricultural monitoring for Internet of things (IoT) to monitor environmental condition. Among the various technologies for Agriculture monitoring, Wireless Sensor Networks (WSNs) are perceived as an amazing one to gather and process information in the agricultural area with low-cost and low-energy consumption. WSN is capable of providing processed field data in real time from sensors which are physically distributed in the field. Agriculture and farming are one of the industries which have a late occupied their regards for WSNs, looking for this financially acute innovation to improve its production and upgrade agribusiness yield standard. Wireless Sensor Networks (WSNs) have pulled in a lot consideration in recent years.The proposed system uses WSN sensors to capture and track information pertaining to crop growth condition outside and inside greenhouses. 6LowPAN network protocol is used for low power consumption and for transmitting and receiving of data packets.This thesis introduces the agricultural monitoring system's hardware design, system architecture, and software process control. Agriculture monitoring system set-up is based on Contiki OS while device testing is carried out using real-time farm information and historical dat

    Mesh Networking in Cyber-Physical Production Systems: Towards Modular Industrial Equipment Integration

    Get PDF
    Ensuring uninterrupted interaction of modular industrial equipment units is one of the most important engineering tasks. The concept of Cyber-Physical Production Systems (CPPS) assumes that the distributed network should correspond to the current industrial process and be able to quickly reorganize it when changes occur. If composition of the equipment becomes more complicated, a standard topology with one central control node might get ineffective. This article describes the application of mesh-network technology to ensure the interaction of industrial devices and sensors included in the modular equipment. Virtual deployment of the network and a description network nodes interaction including new node registration in the dispatcher registry are given

    Wireless Technologies for Industry 4.0 Applications

    Get PDF
    Wireless technologies are increasingly used in industrial applications. These technologies reduce cabling, which is costly and troublesome, and introduce several benefits for their application in terms of flexibility to modify the layout of the nodes and scaling of the number of connected devices. They may also introduce new functionalities since they ease the connections to mobile devices or parts. Although they have some drawbacks, they are increasingly accepted in industrial applications, especially for monitoring and supervision tasks. Recently, they are starting to be accepted even for time-critical tasks, for example, in closed-loop control systems involving slow dynamic processes. However, wireless technologies have been evolving very quickly during the last few years, since several relevant technologies are available in the market. For this reason, it may become difficult to select the best alternative. This perspective article intends to guide application designers to choose the most appropriate technology in each case. For this purpose, this article discusses the most relevant wireless technologies in the industry and shows different examples of applications

    Integration of wirelessHART and STK600 development kit for data collection in wireless sensor networks

    Get PDF
    Offshore industry operates in world’s most challenging environment. Oil and gas facilities aim for continuous production to achieve the desired goals and a robust communication network is required to avoid production loses. The IEEE 802.15.4 specification has enabled low cost, low power Wireless Sensor Networks (WSNs) capable of providing robust communication and therefore utilises as a promising technology in oil and gas industry. The two most prominent industrial standards using the IEEE 802.15.4 radio technology are WirelessHART and ISA100.11a.These are currently the competitors in the automation and offshore industry. In this project, we have worked on Nivis WirelessHART development kit that has some on-board sensors. Our main goal is to integrate WirelessHART with external sensor board so that we can get the readings from external sensors and publish the data over web interface provided by Nivis. Since, Nivis WirelessHART field router is not an open source and un-programmable, therefore it is considered as a black box. Due to lack of such capabilities, we cannot connect external sensor directly to Nivis radio. We have chosen Atmel STK600-Atmega2560 development kit as an external sensor board. In order to establish communication between STK600 and Nivis WirelessHART, we have written an application in AVR studio and flash it to STK600 over the USB connection. We have implemented a serial communication protocol called Nivis simple API and made Nivis board able to get data from sensors interfacing STK600. Nivis radio will then forward this data to WirelessHART through HART gateway. Moreover, we have configured Monitoring Host to visualize the data from external sensors along with built-in sensors over the Monitoring Control System (MCS). Finally, we evaluate our implementation by various experiments and prove that the overall flow is working properly

    Design and Implementation of a Cross-Platform Sensor Network for Transmission Line Monitoring

    Get PDF
    The current era calls for a greater electricity demand than ever before. Slow information feedback to other power stations was a major contributor to North America\u27s northeast blackout of 2003. Had fault information been efficiently forwarded, the blackout area would have been reduced. It can be seen that having the knowledge of knowing exactly what is happening on the power distribution grid is extremely valuable. This thesis develops a self configuring, sampling and forwarding scheme for transmission line monitoring. A hierarchical communication topology is also proposed. The developed prototype operates successfully and its functionality is documented. A ZigBee testbed is also developed and used to determine its ability to perform in harsh environments, such as the one that may be found in a transmission line or power station environment. This research found that ZigBee devices are able to perform suitably with harsh surroundings

    Modeling Wireless Sensor Network Architectures using AADL

    Get PDF
    International audienceRecent technological advances have enhanced the possibilities of large-scale development and commercial deployment of diverse applications using wireless sensor networks. As this development effort expands, it becomes increasingly important to build tools and formal methodologies that ease large-scale deployments of such networks. In this paper, we advocate the use of an architecture description language called AADL to describe wireless sensor network architectures. We highlight the use of component-connector paradigm of AADL in designing robust, performance-critical, real-time sensor network applications incorporating relevant dependability metrics. By careful analysis and extraction of the common requirements, we describe a case study, that of a simple data collection application using sensor networks, as a proof of concept of the AADL modeling approach. Lastly, we propose several wireless sensor network specific extensions to AADL that will further enhance the richness of such models
    • …
    corecore