462 research outputs found

    Throughput and range characterization of IEEE 802.11ah

    Full text link
    The most essential part of Internet of Things (IoT) infrastructure is the wireless communication system that acts as a bridge for the delivery of data and control messages. However, the existing wireless technologies lack the ability to support a huge amount of data exchange from many battery driven devices spread over a wide area. In order to support the IoT paradigm, the IEEE 802.11 standard committee is in process of introducing a new standard, called IEEE 802.11ah. This is one of the most promising and appealing standards, which aims to bridge the gap between traditional mobile networks and the demands of the IoT. In this paper, we first discuss the main PHY and MAC layer amendments proposed for IEEE 802.11ah. Furthermore, we investigate the operability of IEEE 802.11ah as a backhaul link to connect devices over a long range. Additionally, we compare the aforementioned standard with previous notable IEEE 802.11 amendments (i.e. IEEE 802.11n and IEEE 802.11ac) in terms of throughput (with and without frame aggregation) by utilizing the most robust modulation schemes. The results show an improved performance of IEEE 802.11ah (in terms of power received at long range while experiencing different packet error rates) as compared to previous IEEE 802.11 standards.Comment: 7 pages, 6 figures, 5 table

    Quality of service adaptive modulation and coding scheme for IEEE 802.11ac

    Get PDF
    Nowadays, the rising demand for digital communication technologies has contributed to the increase in the volume of traffic. This continuous trend of internet traffic has led to the deterioration of the quality of service (QoS) with reduced throughput and increased latency. This also is due to the proliferation of new broadband applications which require low latency and high throughput such as virtual reality and real-time gaming. Therefore, considering the aforementioned challenge in QoS of wireless networks, a link adaptation method is suggested in this study, in order to enhance the performance of the QoS in IEEE 802.11ac amendment wireless local-area network (WLAN). The proposed technique adaptively changes the transmission data rate by increasing or decreasing the modulation and coding scheme (MCS) level according to the traffic conditions. With the use of an OMNeT++ computer-aided design (CAD)-based simulation model, the effectiveness of the suggested approach is examined. Simulated findings were compared with the link adaptation approach of the default condition. The results of the simulation demonstrate that the proposed technique significantly increases throughput (36.48%) and decreases latency in comparison to the default situation. These findings demonstrate the technique's potential to improve WLAN QoS efficiency, notably in regard to throughput and latency

    Video QoS/QoE over IEEE802.11n/ac: A Contemporary Survey

    Get PDF
    The demand for video applications over wireless networks has tremendously increased, and IEEE 802.11 standards have provided higher support for video transmission. However, providing Quality of Service (QoS) and Quality of Experience (QoE) for video over WLAN is still a challenge due to the error sensitivity of compressed video and dynamic channels. This thesis presents a contemporary survey study on video QoS/QoE over WLAN issues and solutions. The objective of the study is to provide an overview of the issues by conducting a background study on the video codecs and their features and characteristics, followed by studying QoS and QoE support in IEEE 802.11 standards. Since IEEE 802.11n is the current standard that is mostly deployed worldwide and IEEE 802.11ac is the upcoming standard, this survey study aims to investigate the most recent video QoS/QoE solutions based on these two standards. The solutions are divided into two broad categories, academic solutions, and vendor solutions. Academic solutions are mostly based on three main layers, namely Application, Media Access Control (MAC) and Physical (PHY) which are further divided into two major categories, single-layer solutions, and cross-layer solutions. Single-layer solutions are those which focus on a single layer to enhance the video transmission performance over WLAN. Cross-layer solutions involve two or more layers to provide a single QoS solution for video over WLAN. This thesis has also presented and technically analyzed QoS solutions by three popular vendors. This thesis concludes that single-layer solutions are not directly related to video QoS/QoE, and cross-layer solutions are performing better than single-layer solutions, but they are much more complicated and not easy to be implemented. Most vendors rely on their network infrastructure to provide QoS for multimedia applications. They have their techniques and mechanisms, but the concept of providing QoS/QoE for video is almost the same because they are using the same standards and rely on Wi-Fi Multimedia (WMM) to provide QoS

    Wi-Fi QoS improvements for industrial automation

    Get PDF
    Digitalization caused a considerable increase in the use of industrial automation applications. Industrial automation applications use real-time traffic with strict requirements of connection of tens of devices, high-reliability, determinism, low-latency, and synchronization. The current solutions meeting these requirements are wired technologies. However, there is a need for wireless technologies for mobility,less complexity, and quick deployment. There are many studies on cellular technologies for industrial automation scenarios with strict reliability and latency requirements, but not many developments for wireless communications over unlicensed bands. Wireless Fidelity (Wi-Fi) is a commonly used and preferred technology in factory automation since it is supported by many applications and operates on a license free-band. However, there is still room for improving Wi-Fi systems performance for low-latency and high-reliable communication requirements in industrial automation use cases. There are various limitations in the current Wi-Fi system restraining the deployment for time-critical operations. For meeting the strict timing requirements of low delay and jitter in industrial automation applications, Quality of Service (QoS)in Wi-Fi needs to be improved. In this thesis, a new access category in Medium Access Control (MAC) layer for industrial automation applications is proposed.The performance improvement is analyzed with simulations, and a jitter definition for a Wi-Fi system is studied. Then, a fixed Modulation and Coding (MCS) link adaptation method and bounded delay is implemented for time-critical traffic in the simulation cases to observe performance changes. Finally, it is shown that the new access category with no backoff time can decrease the delay and jitter of time-critical applications. The improvements in Wi-Fi QoS are shown in comparison with the current standard, and additional enhancements about using a fixed modulation and coding scheme and implementation of a bounded delay are also analyzed in this thesi

    Feedback Mechanisms for Centralized and Distributed Mobile Systems

    Get PDF
    The wireless communication market is expected to witness considerable growth in the immediate future due to increasing smart device usage to access real-time data. Mobile devices become the predominant method of Internet access via cellular networks (4G/5G) and the onset of virtual reality (VR), ushering in the wide deployment of multiple bands, ranging from TVWhite Spaces to cellular/WiFi bands and on to mmWave. Multi-antenna techniques have been considered to be promising approaches in telecommunication to optimize the utilization of radio spectrum and minimize the cost of system construction. The performance of multiple antenna technology depends on the utilization of radio propagation properties and feedback of such information in a timely manner. However, when a signal is transmitted, it is usually dispersed over time coming over different paths of different lengths due to reflections from obstacles or affected by Doppler shift in mobile environments. This motivates the design of novel feedback mechanisms that improve the performance of multi-antenna systems. Accurate channel state information (CSI) is essential to increasing throughput in multiinput, multi-output (MIMO) systems with digital beamforming. Channel-state information for the operation of MIMO schemes (such as transmit diversity or spatial multiplexing) can be acquired by feedback of CSI reports in the downlink direction, or inferred from uplink measurements assuming perfect channel reciprocity (CR). However, most works make the assumption that channels are perfectly reciprocal. This assumption is often incorrect in practice due to poor channel estimation and imperfect channel feedback. Instead, experiments have demonstrated that channel reciprocity can be easily broken by multiple factors. Specifically, channel reciprocity error (CRE) introduced by transmitter-receiver imbalance have been widely studied by both simulations and experiments, and the impact of mobility and estimation error have been fully investigated in this thesis. In particular, unmanned aerial vehicles (UAVs) have asymmetric behavior when communicating with one another and to the ground, due to differences in altitude that frequently occur. Feedback mechanisms are also affected by channel differences caused by the user’s body. While there has been work to specifically quantify the losses in signal reception, there has been little work on how these channel differences affect feedback mechanisms. In this dissertation, we perform system-level simulations, implement design with a software defined radio platform, conduct in-field experiments for various wireless communication systems to analyze different channel feedback mechanisms. To explore the feedback mechanism, we then explore two specific real world scenarios, including UAV-based beamforming communications, and user-induced feedback systems
    • …
    corecore