1,414 research outputs found

    JamLab: Augmenting Sensornet Testbeds with Realistic and Controlled Interference Generation

    Get PDF
    Radio interference drastically affects the performance of sensor-net communications, leading to packet loss and reduced energy-efficiency. As an increasing number of wireless devices operates on the same ISM frequencies, there is a strong need for understanding and debugging the performance of existing sensornet protocols under interference. Doing so requires a low-cost flexible testbed infrastructure that allows the repeatable generation of a wide range of interference patterns. Unfortunately, to date, existing sensornet testbeds lack such capabilities, and do not permit to study easily the coexistence problems between devices sharing the same frequencies. This paper addresses the current lack of such an infrastructure by using off-the-shelf sensor motes to record and playback interference patterns as well as to generate customizable and repeat-able interference in real-time. We propose and develop JamLab: a low-cost infrastructure to augment existing sensornet testbeds with accurate interference generation while limiting the overhead to a simple upload of the appropriate software. We explain how we tackle the hardware limitations and get an accurate measurement and regeneration of interference, and we experimentally evaluate the accuracy of JamLab with respect to time, space, and intensity. We further use JamLab to characterize the impact of interference on sensornet MAC protocols

    Quality of Service Issues for Reinforcement Learning Based Routing Algorithm for Ad-Hoc Networks

    Get PDF
    Mobile ad-hoc networks are dynamic networks which are decentralized and autonomous in nature. Many routing algorithms have been proposed for these dynamic networks. It is an important problem to model Quality of Service requirements on these types of algorithms which traditionally have certain limitations. To model this scenario we have considered a reinforcement learning algorithm SAMPLE. SAMPLE promises to deal effectively with congestion and under high traffic load. As it is natural for ad-hoc networks to move in groups, we have considered the various group mobility models. The Pursue Mobility Model with its superiormobilitymetrics exhibits better performance. At the data link layer we have considered IEEE 802.11e, a MAC layer which has provisions to support QoS. As mobile ad-hoc networks are constrained by resources like energy and bandwidth, it is imperative for them to cooperate in a reasonably selfish manner. Thus, in this paper we propose cooperation with a moderately punishing algorithm based on game theory. The proposed algorithm in synchronization with SAMPLE yields better results on IEEE 802.11e

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Dual protocol performance using WiFi and ZigBee for industrial WLAN

    Get PDF
    The purpose of this thesis is to study the performance of a WNCS based on utilizing IEEE 802.15.4 and IEEE 802.11 in meeting industrial requirements as well as the extent of improvement on the network level in terms of latency and interference tolerance when using the two different protocols, namely WiFi and ZigBee, in parallel. The study evaluates the optimum performance of WNCS that utilizes only IEEE 802.15.4 protocol (which ZigBee is based on) without modifications as an alternative that is low cost and low power compared to other wireless technologies. The study also evaluates the optimum performance of WNCS that utilizes only the IEEE 802.11 protocol (WiFi) without modifications as a high bit network. OMNeT++ simulations are used to measure the end-to-end delay and packet loss from the sensors to the controller and from the controller to the actuators. It is demonstrated that the measured delay of the proposed WNCS including all types of transmission, encapsulation, de-capsulation, queuing and propagation, meet real-time control network requirements while guaranteeing correct packet reception with no packet loss. Moreover, it is shown that the demonstrated performance of the proposed WNCS operating redundantly on both networks in parallel is significantly superior to a WNCS operating on either a totally wireless ZigBee or WiFi network individually in terms of measured delay and interference tolerance. This proposed WNCS demonstrates the combined advantages of both the IEEE 802.15.4 protocol (which ZigBee is based on) without modifications being low cost and low power compared to other wireless technologies as well the advantages of the IEEE 802.11 protocol (WiFi) being increased bit rate and higher immunity to interference. All results presented in this study were based on a 95% confidence analysis

    Time-Driven Access and Forwarding for Industrial Wireless Multihop Networks

    Get PDF
    The deployment of wireless technologies in industrial networks is very promising mainly due to their inherent flexibility. However, current wireless solutions lack the capability to provide the deterministic, low delay service required by many industrial applications. Moreover, the high level of interference generated by industrial equipment limits the coverage that ensures acceptable performance. Multi-hop solutions, when combining frame forwarding with higher node density, have the potential to provide the needed coverage while keeping radio communication range short. However, in multi-hop solutions the medium access time at each of the nodes traversed additively contributes to the end-to-end delay and the forwarding delay (i.e., the time required for packets to be processed, switched, and queued) at each node is to be added as well. This paper describes Time-driven Access and Forwarding (TAF), a solution for guaranteeing deterministic delay, at both the access and forwarding level, in wireless multi-hop networks, analyzes its properties, and assesses its performance in industrial scenario

    Modelling and performance analysis of mobile ad hoc networks

    Get PDF
    PhD ThesisMobile Ad hoc Networks (MANETs) are becoming very attractive and useful in many kinds of communication and networking applications. This is due to their efficiency, relatively low cost, and flexibility provided by their dynamic infrastructure. Performance evaluation of mobile ad hoc networks is needed to compare various architectures of the network for their performance, study the effect of varying certain network parameters and study the interaction between various parameters that characterise the network. It can help in the design and implementation of MANETs. It is to be noted that most of the research that studies the performance of MANETs were evaluated using discrete event simulation (DES) utilising a broad band of network simulators. The principle drawback of DES models is the time and resources needed to run such models for large realistic systems, especially when results with a high accuracy are desired. In addition, studying typical problems such as the deadlock and concurrency in MANETs using DES is hard because network simulators implement the network at a low abstraction level and cannot support specifications at higher levels. Due to the advantage of quick construction and numerical analysis, analytical modelling techniques, such as stochastic Petri nets and process algebra, have been used for performance analysis of communication systems. In addition, analytical modelling is a less costly and more efficient method. It generally provides the best insight into the effects of various parameters and their interactions. Hence, analytical modelling is the method of choice for a fast and cost effective evaluation of mobile ad hoc networks. To the best of our knowledge, there is no analytical study that analyses the performance of multi-hop ad hoc networks, where mobile nodes move according to a random mobility model, in terms of the end-to-end delay and throughput. This work ii presents a novel analytical framework developed using stochastic reward nets and mathematical modelling techniques for modelling and analysis of multi-hop ad hoc networks, based on the IEEE 802.11 DCF MAC protocol, where mobile nodes move according to the random waypoint mobility model. The proposed framework is used to analysis the performance of multi-hop ad hoc networks as a function of network parameters such as the transmission range, carrier sensing range, interference range, number of nodes, network area size, packet size, and packet generation rate. The proposed framework is organized into several models to break up the complexity of modelling the complete network and make it easier to analyse each model as required. This is based on the idea of decomposition and fixed point iteration of stochastic reward nets. The proposed framework consists of a mathematical model and four stochastic reward nets models; the path analysis model, data link layer model, network layer model and transport layer model. These models are arranged in a way similar to the layers of the OSI protocol stack model. The mathematical model is used to compute the expected number of hops between any source-destination pair; and the average number of carrier sensing, hidden, and interfering nodes. The path analysis model analyses the dynamic of paths in the network due to the node mobility in terms of the path connection availability and rate of failure and repair. The data link layer model describes the behaviour of the IEEE 802.11 DCF MAC protocol. The actions in the network layer are modelled by the network layer model. The transport layer model represents the behaviour of the transport layer protocols. The proposed models are validated using extensive simulations

    Industry 4.0: Industrial IoT Enhancement and WSN Performance Analysis

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore