144 research outputs found

    A Multi-Layer and Multi-Tenant Cloud Assurance Evaluation Methodology

    Get PDF
    Data with high security requirements is being processed and stored with increasing frequency in the Cloud. To guarantee that the data is being dealt in a secure manner we investigate the applicability of Assurance methodologies. In a typical Cloud environment the setup of multiple layers and different stakeholders determines security properties of individual components that are used to compose Cloud applications. We present a methodology adapted from Common Criteria for aggregating information reflecting the security properties of individual constituent components of Cloud applications. This aggregated information is used to categorise overall application security in terms of Assurance Levels and to provide a continuous assurance level evaluation. It gives the service owner an overview of the security of his service, without requiring detailed manual analyses of log files

    Information Security in the Cloud: Should We be Using a Different Approach?

    Get PDF
    Postprin

    Accountability Requirements in the Cloud Provider Chain

    Get PDF
    In order to be responsible stewards of other people’s data, cloud providers must be accountable for their data handling practices. The potential long provider chains in cloud computing introduce additional accountability challenges, with many stakeholders involved. Symmetry is very important in any requirements’ elicitation activity, since input from diverse stakeholders needs to be balanced. This article ventures to answer the question “How can one create an accountable cloud service?” by examining requirements which must be fulfilled to achieve an accountability-based approach, based on interaction with over 300 stakeholders.publishedVersio

    ‎An Artificial Intelligence Framework for Supporting Coarse-Grained Workload Classification in Complex Virtual Environments

    Get PDF
    Cloud-based machine learning tools for enhanced Big Data applications}‎, ‎where the main idea is that of predicting the ``\emph{next}'' \emph{workload} occurring against the target Cloud infrastructure via an innovative \emph{ensemble-based approach} that combines the effectiveness of different well-known \emph{classifiers} in order to enhance the whole accuracy of the final classification‎, ‎which is very relevant at now in the specific context of \emph{Big Data}‎. ‎The so-called \emph{workload categorization problem} plays a critical role in improving the efficiency and reliability of Cloud-based big data applications‎. ‎Implementation-wise‎, ‎our method proposes deploying Cloud entities that participate in the distributed classification approach on top of \emph{virtual machines}‎, ‎which represent classical ``commodity'' settings for Cloud-based big data applications‎. ‎Given a number of known reference workloads‎, ‎and an unknown workload‎, ‎in this paper we deal with the problem of finding the reference workload which is most similar to the unknown one‎. ‎The depicted scenario turns out to be useful in a plethora of modern information system applications‎. ‎We name this problem as \emph{coarse-grained workload classification}‎, ‎because‎, ‎instead of characterizing the unknown workload in terms of finer behaviors‎, ‎such as CPU‎, ‎memory‎, ‎disk‎, ‎or network intensive patterns‎, ‎we classify the whole unknown workload as one of the (possible) reference workloads‎. ‎Reference workloads represent a category of workloads that are relevant in a given applicative environment‎. ‎In particular‎, ‎we focus our attention on the classification problem described above in the special case represented by \emph{virtualized environments}‎. ‎Today‎, ‎\emph{Virtual Machines} (VMs) have become very popular because they offer important advantages to modern computing environments such as cloud computing or server farms‎. ‎In virtualization frameworks‎, ‎workload classification is very useful for accounting‎, ‎security reasons‎, ‎or user profiling‎. ‎Hence‎, ‎our research makes more sense in such environments‎, ‎and it turns out to be very useful in a special context like Cloud Computing‎, ‎which is emerging now‎. ‎In this respect‎, ‎our approach consists of running several machine learning-based classifiers of different workload models‎, ‎and then deriving the best classifier produced by the \emph{Dempster-Shafer Fusion}‎, ‎in order to magnify the accuracy of the final classification‎. ‎Experimental assessment and analysis clearly confirm the benefits derived from our classification framework‎. ‎The running programs which produce unknown workloads to be classified are treated in a similar way‎. ‎A fundamental aspect of this paper concerns the successful use of data fusion in workload classification‎. ‎Different types of metrics are in fact fused together using the Dempster-Shafer theory of evidence combination‎, ‎giving a classification accuracy of slightly less than 80%80\%‎. ‎The acquisition of data from the running process‎, ‎the pre-processing algorithms‎, ‎and the workload classification are described in detail‎. ‎Various classical algorithms have been used for classification to classify the workloads‎, ‎and the results are compared‎

    Cloud Services Brokerage for Mobile Ubiquitous Computing

    Get PDF
    Recently, companies are adopting Mobile Cloud Computing (MCC) to efficiently deliver enterprise services to users (or consumers) on their personalized devices. MCC is the facilitation of mobile devices (e.g., smartphones, tablets, notebooks, and smart watches) to access virtualized services such as software applications, servers, storage, and network services over the Internet. With the advancement and diversity of the mobile landscape, there has been a growing trend in consumer attitude where a single user owns multiple mobile devices. This paradigm of supporting a single user or consumer to access multiple services from n-devices is referred to as the Ubiquitous Cloud Computing (UCC) or the Personal Cloud Computing. In the UCC era, consumers expect to have application and data consistency across their multiple devices and in real time. However, this expectation can be hindered by the intermittent loss of connectivity in wireless networks, user mobility, and peak load demands. Hence, this dissertation presents an architectural framework called, Cloud Services Brokerage for Mobile Ubiquitous Cloud Computing (CSB-UCC), which ensures soft real-time and reliable services consumption on multiple devices of users. The CSB-UCC acts as an application middleware broker that connects the n-devices of users to the multi-cloud services. The designed system determines the multi-cloud services based on the user's subscriptions and the n-devices are determined through device registration on the broker. The preliminary evaluations of the designed system shows that the following are achieved: 1) high scalability through the adoption of a distributed architecture of the brokerage service, 2) providing soft real-time application synchronization for consistent user experience through an enhanced mobile-to-cloud proximity-based access technique, 3) reliable error recovery from system failure through transactional services re-assignment to active nodes, and 4) transparent audit trail through access-level and context-centric provenance

    Application Performance Optimization in Multicloud Environment

    Get PDF
    Through the development and accessibility of the Internet, nowadays the cloud computing has become a very popular. Through the development and accessibility of the Internet, nowadays the cloud computing has become a very popular. This concept has the potential to change the use of information technologies. Cloud computing is the technology that provides infrastructure, platform or software as a service via the network to a huge number of remote users. The main benefit of cloud computing is the utilization of elastic resources and virtualization. Two main properties are required from clouds by users: interoperability and privacy. This article focuses on interoperability. Nowadays it is difficult to migrate an application between clouds offered by different providers. The article deals with that problem in multicloud environment. Specifically, it focuses on the application performance optimization in a multicloud environment. A new method is suggested based on the state of the art. The method is divided into three parts: multicloud architecture, method of a horizontal scalability, and taxonomy for multicriteria optimization. The principles of the method were applied in a design of multicriteria optimization architecture, which we verified experimentally. The aim of our experiment is carried on a portal offering a platform according to the users' requirements

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that oïŹ€ers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and eïŹ€ective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our ïŹrst contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The ïŹrst sub-problem is the server power mode detection (sleep or active). The second sub-problem is to ïŹnd an eïŹ€ective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our ïŹfth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy eïŹƒciency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    A Bag-of-Tasks Scheduler Tolerant to Temporal Failures in Clouds

    Full text link
    Cloud platforms have emerged as a prominent environment to execute high performance computing (HPC) applications providing on-demand resources as well as scalability. They usually offer different classes of Virtual Machines (VMs) which ensure different guarantees in terms of availability and volatility, provisioning the same resource through multiple pricing models. For instance, in Amazon EC2 cloud, the user pays per hour for on-demand VMs while spot VMs are unused instances available for lower price. Despite the monetary advantages, a spot VM can be terminated, stopped, or hibernated by EC2 at any moment. Using both hibernation-prone spot VMs (for cost sake) and on-demand VMs, we propose in this paper a static scheduling for HPC applications which are composed by independent tasks (bag-of-task) with deadline constraints. However, if a spot VM hibernates and it does not resume within a time which guarantees the application's deadline, a temporal failure takes place. Our scheduling, thus, aims at minimizing monetary costs of bag-of-tasks applications in EC2 cloud, respecting its deadline and avoiding temporal failures. To this end, our algorithm statically creates two scheduling maps: (i) the first one contains, for each task, its starting time and on which VM (i.e., an available spot or on-demand VM with the current lowest price) the task should execute; (ii) the second one contains, for each task allocated on a VM spot in the first map, its starting time and on which on-demand VM it should be executed to meet the application deadline in order to avoid temporal failures. The latter will be used whenever the hibernation period of a spot VM exceeds a time limit. Performance results from simulation with task execution traces, configuration of Amazon EC2 VM classes, and VMs market history confirms the effectiveness of our scheduling and that it tolerates temporal failures
    • 

    corecore