133 research outputs found

    Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development

    Full text link
    Mobile devices and platforms have become an established target for modern software developers due to performant hardware and a large and growing user base numbering in the billions. Despite their popularity, the software development process for mobile apps comes with a set of unique, domain-specific challenges rooted in program comprehension. Many of these challenges stem from developer difficulties in reasoning about different representations of a program, a phenomenon we define as a "language dichotomy". In this paper, we reflect upon the various language dichotomies that contribute to open problems in program comprehension and development for mobile apps. Furthermore, to help guide the research community towards effective solutions for these problems, we provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference on Program Comprehension (ICPC'18

    On the Effect of Semantically Enriched Context Models on Software Modularization

    Full text link
    Many of the existing approaches for program comprehension rely on the linguistic information found in source code, such as identifier names and comments. Semantic clustering is one such technique for modularization of the system that relies on the informal semantics of the program, encoded in the vocabulary used in the source code. Treating the source code as a collection of tokens loses the semantic information embedded within the identifiers. We try to overcome this problem by introducing context models for source code identifiers to obtain a semantic kernel, which can be used for both deriving the topics that run through the system as well as their clustering. In the first model, we abstract an identifier to its type representation and build on this notion of context to construct contextual vector representation of the source code. The second notion of context is defined based on the flow of data between identifiers to represent a module as a dependency graph where the nodes correspond to identifiers and the edges represent the data dependencies between pairs of identifiers. We have applied our approach to 10 medium-sized open source Java projects, and show that by introducing contexts for identifiers, the quality of the modularization of the software systems is improved. Both of the context models give results that are superior to the plain vector representation of documents. In some cases, the authoritativeness of decompositions is improved by 67%. Furthermore, a more detailed evaluation of our approach on JEdit, an open source editor, demonstrates that inferred topics through performing topic analysis on the contextual representations are more meaningful compared to the plain representation of the documents. The proposed approach in introducing a context model for source code identifiers paves the way for building tools that support developers in program comprehension tasks such as application and domain concept location, software modularization and topic analysis

    Are We Building on the Rock? On the Importance of Data Preprocessing for Code Summarization

    Full text link
    Code summarization, the task of generating useful comments given the code, has long been of interest. Most of the existing code summarization models are trained and validated on widely-used code comment benchmark datasets. However, little is known about the quality of the benchmark datasets built from real-world projects. Are the benchmark datasets as good as expected? To bridge the gap, we conduct a systematic research to assess and improve the quality of four benchmark datasets widely used for code summarization tasks. First, we propose an automated code-comment cleaning tool that can accurately detect noisy data caused by inappropriate data preprocessing operations from existing benchmark datasets. Then, we apply the tool to further assess the data quality of the four benchmark datasets, based on the detected noises. Finally, we conduct comparative experiments to investigate the impact of noisy data on the performance of code summarization models. The results show that these data preprocessing noises widely exist in all four benchmark datasets, and removing these noisy data leads to a significant improvement on the performance of code summarization. We believe that the findings and insights will enable a better understanding of data quality in code summarization tasks, and pave the way for relevant research and practice

    Automatic detection and repair of directive defects of Java APIs documentation

    Get PDF
    Application Programming Interfaces (APIs) represent key tools for software developers to build complex software systems. However, several studies have revealed that even major API providers tend to have incomplete or inconsistent API documentation. This can severely hamper the API comprehension and as a consequence the quality of the software built on them. In this paper, we propose DRONE (Detect and Repair of dOcumentatioN dEfects), a framework to automatically detect and repair defects from API documents by leveraging techniques from program analysis, natural language processing, and constraint solving. Specifically, we target at the directives of API documents, which are related to parameter constraints and exception handling declarations. Furthermore, in presence of defects, we also provide a prototypical repair recommendation system. We evaluate our approach on parts of the well-documented APIs of JDK 1.8 APIs (including javaFX) and Android 7.0 (level 24). Across the two empirical studies, our approach can detect API defects with an average F-measure of 79.9%, 71.7%, and 81.4%, respectively. The API repairing capability has also been evaluated on the generated recommendations in a further experiment. User judgements indicate that the constraint information is addressed correctly and concisely in the rendered directives

    Code Structure Guided Transformer for Source Code Summarization

    Full text link
    Code summaries help developers comprehend programs and reduce their time to infer the program functionalities during software maintenance. Recent efforts resort to deep learning techniques such as sequence-to-sequence models for generating accurate code summaries, among which Transformer-based approaches have achieved promising performance. However, effectively integrating the code structure information into the Transformer is under-explored in this task domain. In this paper, we propose a novel approach named SG-Trans to incorporate code structural properties into Transformer. Specifically, we inject the local symbolic information (e.g., code tokens and statements) and global syntactic structure (e.g., data flow graph) into the self-attention module of Transformer as inductive bias. To further capture the hierarchical characteristics of code, the local information and global structure are designed to distribute in the attention heads of lower layers and high layers of Transformer. Extensive evaluation shows the superior performance of SG-Trans over the state-of-the-art approaches. Compared with the best-performing baseline, SG-Trans still improves 1.4% and 2.0% in terms of METEOR score, a metric widely used for measuring generation quality, respectively on two benchmark datasets
    • …
    corecore