101 research outputs found

    Managing temporal allocation in Integrated Modular Avionics

    Get PDF
    International audienceRecent civil airborne platforms are produced using Integrated Modular Avionics (IMA). IMA promotes both sharing of execution and communication resources by the avionics applications. Designs following IMA decrease the weight of avionics equipment and improve the whole system scalability. However, the price to pay for these benefits is an increase of the system's complexity, triggering a challenging system integration process. Central to this integration step are the timing requirements of avionics applications: the system integrator has to find a mapping of applications and communications on the available target architecture (processing modules, networks, etc.) such as end-to-end delay constraints are met. These challenges stress the need for a tool capable of evaluating different integration choices in the early design stages of IMA. In this paper, we present and formalize the problem of spatial and temporal integration of an IMA system. Then, we focus on the temporal allocation problem which is critical to ensure a proper timely behavior of the system. Two main properties are presented to ensure perfect data transmission for hard real-time flows. To quantify the quality of a set of valid temporal allocations, CPM utilization and communication robustness performance criteria are defined. We show on an example that both criteria are antagonist and that they can be leveraged to choose an allocation that either improves the system computing performance or the robustness of the network

    Sheet-metal press line parameter tuning using a combined DIRECT and Nelder-Mead algorithm

    Get PDF
    It is a great challenge to obtain an efficient algorithm for global optimisation of nonlinear, nonconvex and high dimensional objective functions. This paper shows how the combination of DIRECT and Nelder-Mead algorithms can improve the efficiency in the parameter tuning of a sheet-metal press line. A combined optimisation algorithm is proposed that determines and utilises all local optimal points from DIRECT algorithm as Nelder-Mead starting points. To reduce the total optimisation time, all Nelder-Mead optimisations can be executed in parallel. Additionally, a Collision Inspection Method is implemented in the simulation model to reduce the evaluation time. Altogether, this results in an industrially useful parameter tuning method. Improvements of an increased production rate of 7% and 40% smoother robot motions have been achieved

    Hierarchical fault tolerance in wireless networked control systems

    Get PDF
    Wireless Networked Control Systems (WNCS) have recently emerged as a replacement for wired control networks. Wireless networked control systems are more suitable for environments that require higher flexibility and robustness. In previous literature a wireless manufacturing line was proposed. The work-cells communication was through IEEE 802.11 technologies and a switched Ethernet backbone. This thesis is aiming to improve the current solution by adding a supervisor to the existing system. The supervisor could be either in passive or active mode. Passive supervisor would intervene when all controllers in the network fail, while active supervisor would act once any controller on the line fail. The system was simulated using OPNET software with 95% confidence analysis. The ability of the system to withstand external interference was assessed through adding a single band jammer to the OPNET simulation. The system was able to hold up to 8KB interfering file sent from a single band jammer affecting the full Wi-Fi spectrum. All results were subjected to a 95% confidence analysis The performability of passive and active supervisor systems was compared. A Markov model of both systems was built. It was shown that by time, the performability of a passive supervisor system is enhanced while that of an active supervisor system degraded. However, the active supervisor showed a better performability in all cases

    Virtual Node - To Achieve Temporal Isolation and Predictable Integration of Real-Time Components

    Get PDF
    We present an approach of two-level deployment process for component models used in distributed real-time embedded systems to achieve predictable integration of real-time components. Our main emphasis is on the new concept of virtual node with the use of a hierarchical scheduling technique. Virtual nodes are used as means to achieve predictable integration of software components with real-time requirements. The hierarchical scheduling framework is used to achieve temporal isolation between components (or sets of components). Our approach permits detailed analysis, e.g., with respect to timing, of virtual nodes and this analysis is also reusable with the reuse of virtual nodes. Hence virtual node preserves real-time properties across reuse and integration in different contexts

    Verification of automotive networks - what to expect (and not expect) from each technique

    Get PDF
    The presentation focuses on the verification of wired automotive buses and addresses the following topics: historical perspective of verification techniques, review of the different sets of messages and verification techniques along the development cycle, performance metrics and end-to-end constraints, early stage verification technique: schedulability analysis versus simulation

    Vérification formelle de conditions d'ordonnancabilité de tâches temps réel périodiques strictes

    Get PDF
    National audienceNous formalisons en Coq le problème de l'ordonnancement de tâches périodiques strictes non préemptives et prouvons formellement le théorème dû à Jan Korst donnant la condition nécessaire et suffisante pour l'ordonnançabilité de telles tâches
    • …
    corecore