509 research outputs found

    A neural-visualization IDS for honeynet data

    Get PDF
    Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspection of the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and comparison of the proposed projection methods are performed in a real domain, where two different case studies are defined and analyzedRegional Government of Gipuzkoa, the Department of Research, Education and Universities of the Basque Government, and the Spanish Ministry of Science and Innovation (MICINN) under projects TIN2010-21272-C02-01 and CIT-020000-2009-12 (funded by the European Regional Development Fund). This work was also supported in the framework of the IT4Innovations Centre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 supported by the Operational Program 'Research and Development for Innovations' funded through the Structural Funds of the European Union and the state budget of the Czech RepublicElectronic version of an article published as International Journal of Neural Systems, Volume 22, Issue 02, April 2012 10.1142/S0129065712500050 ©copyright World Scientific Publishing Company http://www.worldscientific.com/worldscinet/ijn

    Visualising network security attacks with multiple 3D visualisation and false alert classification

    Get PDF
    Increasing numbers of alerts produced by network intrusion detection systems (NIDS) have burdened the job of security analysts especially in identifying and responding to them. The tasks of exploring and analysing large quantities of communication network security data are also difficult. This thesis studied the application of visualisation in combination with alerts classifier to make the exploring and understanding of network security alerts data faster and easier. The prototype software, NSAViz, has been developed to visualise and to provide an intuitive presentation of the network security alerts data using interactive 3D visuals with an integration of a false alert classifier. The needs analysis of this prototype was based on the suggested needs of network security analyst's tasks as seen in the literatures. The prototype software incorporates various projections of the alert data in 3D displays. The overview was plotted in a 3D plot named as "time series 3D AlertGraph" which was an extension of the 2D histographs into 3D. The 3D AlertGraph was effectively summarised the alerts data and gave the overview of the network security status. Filtering, drill-down and playback of the alerts at variable speed were incorporated to strengthen the analysis. Real-time visual observation was also included. To identify true alerts from all alerts represents the main task of the network security analyst. This prototype software was integrated with a false alert classifier using a classification tree based on C4.5 classification algorithm to classify the alerts into true and false. Users can add new samples and edit the existing classifier training sample. The classifier performance was measured using k-fold cross-validation technique. The results showed the classifier was able to remove noise in the visualisation, thus making the pattern of the true alerts to emerge. It also highlighted the true alerts in the visualisation. Finally, a user evaluation was conducted to find the usability problems in the tool and to measure its effectiveness. The feed backs showed the tools had successfully helped the task of the security analyst and increased the security awareness in their supervised network. From this research, the task of exploring and analysing a large amount of network security data becomes easier and the true attacks can be identified using the prototype visualisation tools. Visualisation techniques and false alert classification are helpful in exploring and analysing network security data.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Interactive visualization of event logs for cybersecurity

    Get PDF
    Hidden cyber threats revealed with new visualization software Eventpa

    A Firewall Optimization for Threat-Resilient Micro-Segmentation in Power System Networks

    Full text link
    Electric power delivery relies on a communications backbone that must be secure. SCADA systems are essential to critical grid functions and include industrial control systems (ICS) protocols such as the Distributed Network Protocol-3 (DNP3). These protocols are vulnerable to cyber threats that power systems, as cyber-physical critical infrastructure, must be protected against. For this reason, the NERC Critical Infrastructure Protection standard CIP-005-5 specifies that an electronic system perimeter is needed, accomplished with firewalls. This paper presents how these electronic system perimeters can be optimally found and generated using a proposed meta-heuristic approach for optimal security zone formation for large-scale power systems. Then, to implement the optimal firewall rules in a large scale power system model, this work presents a prototype software tool that takes the optimization results and auto-configures the firewall nodes for different utilities in a cyber-physical testbed. Using this tool, firewall policies are configured for all the utilities and their substations within a synthetic 2000-bus model, assuming two different network topologies. Results generate the optimal electronic security perimeters to protect a power system's data flows and compare the number of firewalls, monetary cost, and risk alerts from path analysis.Comment: 12 pages, 22 figure
    corecore