40 research outputs found

    IDARTS – Towards intelligent data analysis and real-time supervision for industry 4.0

    Get PDF
    The manufacturing industry represents a data rich environment, in which larger and larger volumes of data are constantly being generated by its processes. However, only a relatively small portion of it is actually taken advantage of by manufacturers. As such, the proposed Intelligent Data Analysis and Real-Time Supervision (IDARTS) framework presents the guidelines for the implementation of scalable, flexible and pluggable data analysis and real-time supervision systems for manufacturing environments. IDARTS is aligned with the current Industry 4.0 trend, being aimed at allowing manufacturers to translate their data into a business advantage through the integration of a Cyber-Physical System at the edge with cloud computing. It combines distributed data acquisition, machine learning and run-time reasoning to assist in fields such as predictive maintenance and quality control, reducing the impact of disruptive events in production.info:eu-repo/semantics/publishedVersio

    An Industrial Data Analysis and Supervision Framework for Predictive Manufacturing Systems

    Get PDF
    Due to the advancements in the Information and Communication Technologies field in the modern interconnected world, the manufacturing industry is becoming a more and more data rich environment, with large volumes of data being generated on a daily basis, thus presenting a new set of opportunities to be explored towards improving the efficiency and quality of production processes. This can be done through the development of the so called Predictive Manufacturing Systems. These systems aim to improve manufacturing processes through a combination of concepts such as Cyber-Physical Production Systems, Machine Learning and real-time Data Analytics in order to predict future states and events in production. This can be used in a wide array of applications, including predictive maintenance policies, improving quality control through the early detection of faults and defects or optimize energy consumption, to name a few. Therefore, the research efforts presented in this document focus on the design and development of a generic framework to guide the implementation of predictive manufacturing systems through a set of common requirements and components. This approach aims to enable manufacturers to extract, analyse, interpret and transform their data into actionable knowledge that can be leveraged into a business advantage. To this end a list of goals, functional and non-functional requirements is defined for these systems based on a thorough literature review and empirical knowledge. Subsequently the Intelligent Data Analysis and Real-Time Supervision (IDARTS) framework is proposed, along with a detailed description of each of its main components. Finally, a pilot implementation is presented for each of this components, followed by the demonstration of the proposed framework in three different scenarios including several use cases in varied real-world industrial areas. In this way the proposed work aims to provide a common foundation for the full realization of Predictive Manufacturing Systems

    A Review of Further Directions for Artificial Intelligence, Machine Learning, and Deep Learning in Smart Logistics

    Get PDF
    Industry 4.0 concepts and technologies ensure the ongoing development of micro- and macro-economic entities by focusing on the principles of interconnectivity, digitalization, and automation. In this context, artificial intelligence is seen as one of the major enablers for Smart Logistics and Smart Production initiatives. This paper systematically analyzes the scientific literature on artificial intelligence, machine learning, and deep learning in the context of Smart Logistics management in industrial enterprises. Furthermore, based on the results of the systematic literature review, the authors present a conceptual framework, which provides fruitful implications based on recent research findings and insights to be used for directing and starting future research initiatives in the field of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in Smart Logistics

    The role of Industry 4.0 enabling technologies for safety management: A systematic literature review

    Get PDF
    Abstract Innovations introduced during the Industry 4.0 era consist in the integration of the so called "nine pillars of technologies" in manufacturing, transforming the conventional factory in a smart factory. The aim of this study is to investigate enabling technologies of Industry 4.0, focusing on technologies that have a greater impact on safety management. Main characteristics of such technologies will be identified and described according to their use in an industrial environment. In order to do this, we chose a systematic literature review (SLR) to answer the research question in a comprehensively way. Results show that articles can be grouped according to different criteria. Moreover, we found that Industry 4.0 can increase safety levels in warehouse and logistic, as well as several solutions are available for building sector

    Industry 4.0 and human factor: How is technology changing the role of the maintenance operator?

    Get PDF
    Abstract Industry 4.0 is revolutionizing not only the manufacturing industry but also maintenance strategies. As consequence of the introduction of Industry 4.0 technologies, new skills are demanded to maintenance operators that has to be able to interact, as instance, with Cyber Physical Systems and robots. In this paper, we first investigate the state-of-the-art of Industry 4.0 technologies that are transforming operations and production management and finally we discuss how the role of maintenance operators is changed in a such digitalized environment. We found that, the maintenance Operator 4.0 should be able to find relevant information and predict events by a proper use of Big Data analytics, in addition to the ability of interacting with computers, digital databases and robots. Finally, the ability to rapidly adapt his skills to innovations is also strongly demanded

    Frameworks for data-driven quality management in cyber-physical systems for manufacturing: A systematic review

    Get PDF
    Recent advances in the manufacturing industry have enabled the deployment of Cyber-Physical Systems (CPS) at scale. By utilizing advanced analytics, data from production can be analyzed and used to monitor and improve the process and product quality. Many frameworks for implementing CPS have been developed to structure the relationship between the digital and the physical worlds. However, there is no systematic review of the existing frameworks related to quality management in manufacturing CPS. Thus, our study aims at determining and comparing the existing frameworks. The systematic review yielded 38 frameworks analyzed regarding their characteristics, use of data science and Machine Learning (ML), and shortcomings and open research issues. The identified issues mainly relate to limitations in cross-industry/cross-process applicability, the use of ML, big data handling, and data security.publishedVersio

    Implementation of Industry 4.0 technology: New opportunities and challenges for maintenance strategy

    Get PDF
    Abstract Industry 4.0 is revolutionizing decision-making processes within the manufacturing industry. Maintenance strategies play a crucial role to improve progressively technical performances and economical savings. The introduction of Industry 4.0 technology results in relevant innovations able to condition maintenance policies. Moreover, innovative solutions can be introduced, such as "remote maintenance" and the "self-maintenance". In this paper, we investigate the state-of-the-art of technologies in a "smart factory" with the aim to understand how Industry 4.0 technologies are affecting maintenance policies and to discuss their implication in strategies. We found important trends in maintenance policies, such as "remote maintenance" and the attractive option of the "autonomous maintenance". This study represents the first comprehensive investigation in these research themes, and it desires to produce a broader insight and knowledge of current trends and main difficulties, highlighting critical aspects and disadvantages for the implementation of innovative policies

    Enabling technology for maintenance in a smart factory: A literature review

    Get PDF
    Industry 4.0 technologies are transforming the factory in an "intelligent" or "smart" factory. In a such context, a greater efficiency and innovative relationship is basically demanded within the whole production chain, including suppliers, producers, and customers. To be more competitive, companies are becoming increasingly aware that maintenance plays a key role during the digital transformation from the perspective of both technology and management. In this work, we perform a literature review of published cases to investigate how maintenance is changing through technologies of Industry 4.0 currently used in maintenance. We found 34 papers in literature involved in analyzing relations between maintenance and Industry 4.0 technology. The analysis of such studies let us to establish the current technology state-of-art and identify the most suited technology that today is employed in maintenance tasks. In particular Industrial Internet of Things and Cloud Computing are more common in the analyzed studies, confirming how these concepts and technologies are at the basis of Industry 4.0

    Fostering Sustainability through Visualization Techniques for Real-Time IoT Data: A Case Study Based on Gas Turbines for Electricity Production

    Get PDF
    Improving sustainability is a key concern for industrial development. Industry has recently been benefiting from the rise of IoT technologies, leading to improvements in the monitoring and breakdown prevention of industrial equipment. In order to properly achieve this monitoring and prevention, visualization techniques are of paramount importance. However, the visualization of real-time IoT sensor data has always been challenging, especially when such data are originated by sensors of different natures. In order to tackle this issue, we propose a methodology that aims to help users to visually locate and understand the failures that could arise in a production process.This methodology collects, in a guided manner, user goals and the requirements of the production process, analyzes the incoming data from IoT sensors and automatically derives the most suitable visualization type for each context. This approach will help users to identify if the production process is running as well as expected; thus, it will enable them to make the most sustainable decision in each situation. Finally, in order to assess the suitability of our proposal, a case study based on gas turbines for electricity generation is presented.This work has been co-funded by the ECLIPSE-UA (RTI2018-094283-B-C32) project funded by Spanish Ministry of Science, Innovation, and Universities and the DQIoT (INNO-20171060) project funded by the Spanish Center for Industrial Technological Development, approved with an EUREKA quality seal (E!11737DQIOT). Ana Lavalle holds an Industrial PhD Grant (I-PI 03-18) co-funded by the University of Alicante and the Lucentia Lab Spin-off Company
    corecore