190 research outputs found

    Automated Test Input Generation for Android: Are We There Yet?

    Full text link
    Mobile applications, often simply called "apps", are increasingly widespread, and we use them daily to perform a number of activities. Like all software, apps must be adequately tested to gain confidence that they behave correctly. Therefore, in recent years, researchers and practitioners alike have begun to investigate ways to automate apps testing. In particular, because of Android's open source nature and its large share of the market, a great deal of research has been performed on input generation techniques for apps that run on the Android operating systems. At this point in time, there are in fact a number of such techniques in the literature, which differ in the way they generate inputs, the strategy they use to explore the behavior of the app under test, and the specific heuristics they use. To better understand the strengths and weaknesses of these existing approaches, and get general insight on ways they could be made more effective, in this paper we perform a thorough comparison of the main existing test input generation tools for Android. In our comparison, we evaluate the effectiveness of these tools, and their corresponding techniques, according to four metrics: code coverage, ability to detect faults, ability to work on multiple platforms, and ease of use. Our results provide a clear picture of the state of the art in input generation for Android apps and identify future research directions that, if suitably investigated, could lead to more effective and efficient testing tools for Android

    Healing Web applications through automatic workarounds

    Get PDF
    We develop the notion of automatic workaround in the context of Web applications. A workaround is a sequence of operations, applied to a failing component, that is equivalent to the failing sequence in terms of its intended effect, but that does not result in a failure. We argue that workarounds exist in modular systems because components often offer redundant interfaces and implementations, which in turn admit several equivalent sequences of operations. In this paper, we focus on Web applications because these are good and relevant examples of component-based (or service-oriented) applications. Web applications also have attractive technical properties that make them particularly amenable to the deployment of automatic workarounds. We propose an architecture where a self-healing proxy applies automatic workarounds to a Web application server. We also propose a method to generate equivalent sequences and to represent and select them at run-time as automatic workarounds. We validate the proposed architecture in four case studies in which we deploy automatic workarounds to handle four known failures in to the popular Flickr and Google Maps Web application

    Time-Space Efficient Regression Testing for Configurable Systems

    Full text link
    Configurable systems are those that can be adapted from a set of options. They are prevalent and testing them is important and challenging. Existing approaches for testing configurable systems are either unsound (i.e., they can miss fault-revealing configurations) or do not scale. This paper proposes EvoSPLat, a regression testing technique for configurable systems. EvoSPLat builds on our previously-developed technique, SPLat, which explores all dynamically reachable configurations from a test. EvoSPLat is tuned for two scenarios of use in regression testing: Regression Configuration Selection (RCS) and Regression Test Selection (RTS). EvoSPLat for RCS prunes configurations (not tests) that are not impacted by changes whereas EvoSPLat for RTS prunes tests (not configurations) which are not impacted by changes. Handling both scenarios in the context of evolution is important. Experimental results show that EvoSPLat is promising. We observed a substantial reduction in time (22%) and in the number of configurations (45%) for configurable Java programs. In a case study on a large real-world configurable system (GCC), EvoSPLat reduced 35% of the running time. Comparing EvoSPLat with sampling techniques, 2-wise was the most efficient technique, but it missed two bugs whereas EvoSPLat detected all bugs four times faster than 6-wise, on average.Comment: 14 page

    Natural Language is a Programming Language: Applying Natural Language Processing to Software Development

    Get PDF
    A powerful, but limited, way to view software is as source code alone. Treating a program as a sequence of instructions enables it to be formalized and makes it amenable to mathematical techniques such as abstract interpretation and model checking. A program consists of much more than a sequence of instructions. Developers make use of test cases, documentation, variable names, program structure, the version control repository, and more. I argue that it is time to take the blinders off of software analysis tools: tools should use all these artifacts to deduce more powerful and useful information about the program. Researchers are beginning to make progress towards this vision. This paper gives, as examples, four results that find bugs and generate code by applying natural language processing techniques to software artifacts. The four techniques use as input error messages, variable names, procedure documentation, and user questions. They use four different NLP techniques: document similarity, word semantics, parse trees, and neural networks. The initial results suggest that this is a promising avenue for future work

    Exploring the link between test suite quality and automatic specification inference

    Get PDF
    While no one doubts the importance of correct and complete specifications, many industrial systems still do not have formal specifications written out β€” and even when they do, it is hard to check their correctness and completeness. This work explores the possibility of using an invariant extraction tool such as Daikon to automatically infer specifications from available test suites with the idea of aiding software engineers to improve the specifications by having another version to compare to. Given that our initial experiments did not produce satisfactory results, in this paper we explore which test suite attributes influence the quality of the inferred specification. Following further study, we found that instruction, branch and method coverage are correlated to high recall values, reaching up to 97.93%.peer-reviewe
    • …
    corecore