38 research outputs found

    Proxcache: A new cache deployment strategy in information-centric network for mitigating path and content redundancy

    Get PDF
    One of the promising paradigms for resource sharing with maintaining the basic Internet semantics is the Information-Centric Networking (ICN). ICN distinction with the current Internet is its ability to refer contents by names with partly dissociating the host-to-host practice of Internet Protocol addresses. Moreover, content caching in ICN is the major action of achieving content networking to reduce the amount of server access. The current caching practice in ICN using the Leave Copy Everywhere (LCE) progenerate problems of over deposition of contents known as content redundancy, path redundancy, lesser cache-hit rates in heterogeneous networks and lower content diversity. This study proposes a new cache deployment strategy referred to as ProXcache to acquire node relationships using hyperedge concept of hypergraph for cache positioning. The study formulates the relationships through the path and distance approximation to mitigate content and path redundancy. The study adopted the Design Research Methodology approach to achieve the slated research objectives. ProXcache was investigated using simulation on the Abilene, GEANT and the DTelekom network topologies for LCE and ProbCache caching strategies with the Zipf distribution to differ content categorization. The results show the overall content and path redundancy are minimized with lesser caching operation of six depositions per request as compared to nine and nineteen for ProbCache and LCE respectively. ProXcache yields better content diversity ratio of 80% against 20% and 49% for LCE and ProbCache respectively as the cache sizes varied. ProXcache also improves the cache-hit ratio through proxy positions. These thus, have significant influence in the development of the ICN for better management of contents towards subscribing to the Future Internet

    Analytical Investigation of On-Path Caching Performance in Information Centric Networks

    Get PDF
    Information Centric Networking (ICN) architectures are proposed as a solution to address the shift from host-centric model toward an information centric model in the Internet. In these architectures, routing nodes have caching functionality that can influence the network traffic and communication quality since the data items can be sent from nodes far closer to the requesting users. Therefore, realizing effective caching networks becomes important to grasp the cache characteristics of each node and to manage system resources, taking into account networking metrics (e.g., higher hit ratio) as well as user’s metrics (e.g. shorter delay). This thesis studies the methodologies for improving the performance of cache management in ICNs. As individual sub-problems, this thesis investigates the LRU-2 and 2-LRU algorithms, geographical locality in distribution of users’ requests and efficient caching in ICNs. As the first contribution of this thesis, a mathematical model to approximate the behaviour of the LRU-2 algorithm is proposed. Then, 2-LRU and LRU-2 cache replacement algorithms are analyzed. The 2-LRU caching strategy has been shown to outperform LRU. The main idea behind 2-LRU and LRU-2 is considering both frequency (i.e. metric used in LFU) and recency (i.e. metric used in LRU) together for cache replacement process. The simulation as well as numeric results show that the proposed LRU-2 model precisely approximates the miss rate for LRU-2 algorithm. Next, the influence of geographical locality in users’ requests on the performance of network of caches is investigated. Geographically localized and global request patterns have both been observed to possess Zipf (i.e. a power-law distribution in which few data items have high request frequencies while most of data items have low request frequencies) properties, although the local distributions are poorly correlated with the global distribution. This suggests that several independent Zipf distributions combine to form an emergent Zipf distribution in real client request scenarios. An algorithm is proposed that can generate realistic synthetic traffic to regional caches that possesses Zipf properties as well as produces a global Zipf distribution. The simulation results show that the caching performance could have different behaviour based on what distribution the users’ requests follow. Finally, the efficiency of cache replacement and replication algorithms in ICNs are studied since ICN literature still lacks an empirical and analytical deep understanding of benefits brought by in-network caching. An analytical model is proposed that optimally distributes a total cache budget among the nodes of ICN networks for LRU cache replacement and LCE cache replication algorithms. The results will show how much user-centric and system-centric benefits could be gained through the in-network caching compared to the benefits obtained through caching facilities provided only at the edge of the network

    An intelligent content prefix classification approach for quality of service optimization in information-centric networking

    Get PDF
    This research proposes an intelligent classification framework for quality of service (QoS) performance improvement in information-centric networking (ICN). The proposal works towards keyword classification techniques to obtain the most valuable information via suitable content prefixes in ICN. In this study, we have achieved the intelligent function using Artificial Intelligence (AI) implementation. Particularly, to find the most suitable and promising intelligent approach for maintaining QoS matrices, we have evaluated various AI algorithms, including evolutionary algorithms (EA), swarm intelligence (SI), and machine learning (ML) by using the cost function to assess their classification performances. With the goal of enabling a complete ICN prefix classification solution, we also propose a hybrid implementation to optimize classification performances by integration of relevant AI algorithms. This hybrid mechanism searches for a final minimum structure to prevent the local optima from happening. By simulation, the evaluation results show that the proposal outperforms EA and ML in terms of network resource utilization and response delay for QoS performance optimization

    Fog Computing in IoT Smart Environments via Named Data Networking: A Study on Service Orchestration Mechanisms

    Get PDF
    [EN] By offering low-latency and context-aware services, fog computing will have a peculiar role in the deployment of Internet of Things (IoT) applications for smart environments. Unlike the conventional remote cloud, for which consolidated architectures and deployment options exist, many design and implementation aspects remain open when considering the latest fog computing paradigm. In this paper, we focus on the problems of dynamically discovering the processing and storage resources distributed among fog nodes and, accordingly, orchestrating them for the provisioning of IoT services for smart environments. In particular, we show how these functionalities can be effectively supported by the revolutionary Named Data Networking (NDN) paradigm. Originally conceived to support named content delivery, NDN can be extended to request and provide named computation services, with NDN nodes acting as both content routers and in-network service executors. To substantiate our analysis, we present an NDN fog computing framework with focus on a smart campus scenario, where the execution of IoT services is dynamically orchestrated and performed by NDN nodes in a distributed fashion. A simulation campaign in ndnSIM, the reference network simulator of the NDN research community, is also presented to assess the performance of our proposal against state-of-the-art solutions. Results confirm the superiority of the proposal in terms of service provisioning time, paid at the expenses of a slightly higher amount of traffic exchanged among fog nodes.This research was partially funded by the Italian Government under grant PON ARS01_00836 for the COGITO (A COGnItive dynamic sysTem to allOw buildings to learn and adapt) PON Project.Amadeo, M.; Ruggeri, G.; Campolo, C.; Molinaro, A.; Loscri, V.; Tavares De Araujo Cesariny Calafate, CM. (2019). Fog Computing in IoT Smart Environments via Named Data Networking: A Study on Service Orchestration Mechanisms. Future Internet. 11(11):1-21. https://doi.org/10.3390/fi11110222S1211111Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431-440. doi:10.1016/j.bushor.2015.03.008Cicirelli, F., Guerrieri, A., Spezzano, G., Vinci, A., Briante, O., Iera, A., & Ruggeri, G. (2018). Edge Computing and Social Internet of Things for Large-Scale Smart Environments Development. IEEE Internet of Things Journal, 5(4), 2557-2571. doi:10.1109/jiot.2017.2775739Chiang, M., & Zhang, T. (2016). Fog and IoT: An Overview of Research Opportunities. IEEE Internet of Things Journal, 3(6), 854-864. doi:10.1109/jiot.2016.2584538Openfog Consortiumhttp://www.openfogconsortium.org/Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, kc, Crowley, P., … Zhang, B. (2014). Named data networking. ACM SIGCOMM Computer Communication Review, 44(3), 66-73. doi:10.1145/2656877.2656887Amadeo, M., Ruggeri, G., Campolo, C., & Molinaro, A. (2019). IoT Services Allocation at the Edge via Named Data Networking: From Optimal Bounds to Practical Design. IEEE Transactions on Network and Service Management, 16(2), 661-674. doi:10.1109/tnsm.2019.2900274ndnSIM 2.0: A New Version of the NDN Simulator for NS-3https://www.researchgate.net/profile/Spyridon_Mastorakis/publication/281652451_ndnSIM_20_A_new_version_of_the_NDN_simulator_for_NS-3/links/5b196020a6fdcca67b63660d/ndnSIM-20-A-new-version-of-the-NDN-simulator-for-NS-3.pdfAhlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., & Ohlman, B. (2012). A survey of information-centric networking. IEEE Communications Magazine, 50(7), 26-36. doi:10.1109/mcom.2012.6231276NFD Developer’s Guidehttps://named-data.net/wp-content/uploads/2016/03/ndn-0021-diff-5..6-nfd-developer-guide.pdfPiro, G., Amadeo, M., Boggia, G., Campolo, C., Grieco, L. A., Molinaro, A., & Ruggeri, G. (2019). Gazing into the Crystal Ball: When the Future Internet Meets the Mobile Clouds. IEEE Transactions on Cloud Computing, 7(1), 210-223. doi:10.1109/tcc.2016.2573307Zhang, G., Li, Y., & Lin, T. (2013). Caching in information centric networking: A survey. Computer Networks, 57(16), 3128-3141. doi:10.1016/j.comnet.2013.07.007Yi, C., Afanasyev, A., Moiseenko, I., Wang, L., Zhang, B., & Zhang, L. (2013). A case for stateful forwarding plane. Computer Communications, 36(7), 779-791. doi:10.1016/j.comcom.2013.01.005Amadeo, M., Briante, O., Campolo, C., Molinaro, A., & Ruggeri, G. (2016). Information-centric networking for M2M communications: Design and deployment. Computer Communications, 89-90, 105-116. doi:10.1016/j.comcom.2016.03.009Tourani, R., Misra, S., Mick, T., & Panwar, G. (2018). Security, Privacy, and Access Control in Information-Centric Networking: A Survey. IEEE Communications Surveys & Tutorials, 20(1), 566-600. doi:10.1109/comst.2017.2749508Ndn-ace: Access Control for Constrained Environments over Named Data Networkinghttp://new.named-data.net/wp-content/uploads/2015/12/ndn-0036-1-ndn-ace.pdfZhang, Z., Yu, Y., Zhang, H., Newberry, E., Mastorakis, S., Li, Y., … Zhang, L. (2018). An Overview of Security Support in Named Data Networking. IEEE Communications Magazine, 56(11), 62-68. doi:10.1109/mcom.2018.1701147Cisco White Paperhttps://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdfAazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying Fog Computing in Industrial Internet of Things and Industry 4.0. IEEE Transactions on Industrial Informatics, 14(10), 4674-4682. doi:10.1109/tii.2018.2855198Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., & Chen, S. (2016). Vehicular Fog Computing: A Viewpoint of Vehicles as the Infrastructures. IEEE Transactions on Vehicular Technology, 65(6), 3860-3873. doi:10.1109/tvt.2016.2532863Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., … Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289-330. doi:10.1016/j.sysarc.2019.02.009Baktir, A. C., Ozgovde, A., & Ersoy, C. (2017). How Can Edge Computing Benefit From Software-Defined Networking: A Survey, Use Cases, and Future Directions. IEEE Communications Surveys & Tutorials, 19(4), 2359-2391. doi:10.1109/comst.2017.2717482Duan, Q., Yan, Y., & Vasilakos, A. V. (2012). A Survey on Service-Oriented Network Virtualization Toward Convergence of Networking and Cloud Computing. IEEE Transactions on Network and Service Management, 9(4), 373-392. doi:10.1109/tnsm.2012.113012.120310Amadeo, M., Campolo, C., & Molinaro, A. (2016). NDNe: Enhancing Named Data Networking to Support Cloudification at the Edge. IEEE Communications Letters, 20(11), 2264-2267. doi:10.1109/lcomm.2016.2597850Krol, M., Marxer, C., Grewe, D., Psaras, I., & Tschudin, C. (2018). Open Security Issues for Edge Named Function Environments. IEEE Communications Magazine, 56(11), 69-75. doi:10.1109/mcom.2018.170111711801-2:2017 Information Technology—Generic Cabling for Customer Premiseshttps://www.iso.org/standard/66183.htm

    Overlay virtualized wireless sensor networks for application in industrial internet of things : a review

    Get PDF
    Abstract: In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs in IIoT is the concept of sensor network virtualization and overlay networks. Both network virtualization and overlay networks are considered contemporary because they provide the capacity to create services and applications at the edge of existing virtual networks without changing the underlying infrastructure. This capability makes both network virtualization and overlay network services highly beneficial, particularly for the dynamic needs of IIoT based applications such as in smart industry applications, smart city, and smart home applications. Consequently, the study of both WSN virtualization and overlay networks has become highly patronized in the literature, leading to the growth and maturity of the research area. In line with this growth, this paper provides a review of the development made thus far concerning virtualized sensor networks, with emphasis on the application of overlay networks in IIoT. Principally, the process of virtualization in WSN is discussed along with its importance in IIoT applications. Different challenges in WSN are also presented along with possible solutions given by the use of virtualized WSNs. Further details are also presented concerning the use of overlay networks as the next step to supporting virtualization in shared sensor networks. Our discussion closes with an exposition of the existing challenges in the use of virtualized WSN for IIoT applications. In general, because overlay networks will be contributory to the future development and advancement of smart industrial and smart city applications, this review may be considered by researchers as a reference point for those particularly interested in the study of this growing field

    From Traditional Adaptive Data Caching to Adaptive Context Caching: A Survey

    Full text link
    Context data is in demand more than ever with the rapid increase in the development of many context-aware Internet of Things applications. Research in context and context-awareness is being conducted to broaden its applicability in light of many practical and technical challenges. One of the challenges is improving performance when responding to large number of context queries. Context Management Platforms that infer and deliver context to applications measure this problem using Quality of Service (QoS) parameters. Although caching is a proven way to improve QoS, transiency of context and features such as variability, heterogeneity of context queries pose an additional real-time cost management problem. This paper presents a critical survey of state-of-the-art in adaptive data caching with the objective of developing a body of knowledge in cost- and performance-efficient adaptive caching strategies. We comprehensively survey a large number of research publications and evaluate, compare, and contrast different techniques, policies, approaches, and schemes in adaptive caching. Our critical analysis is motivated by the focus on adaptively caching context as a core research problem. A formal definition for adaptive context caching is then proposed, followed by identified features and requirements of a well-designed, objective optimal adaptive context caching strategy.Comment: This paper is currently under review with ACM Computing Surveys Journal at this time of publishing in arxiv.or
    corecore