531 research outputs found

    Joint Multi-Cell Resource Allocation Using Pure Binary-Integer Programming for LTE Uplink

    Full text link
    Due to high system capacity requirement, 3GPP Long Term Evolution (LTE) is likely to adopt frequency reuse factor 1 at the cost of suffering severe inter-cell interference (ICI). One of combating ICI strategies is network cooperation of resource allocation (RA). For LTE uplink RA, requiring all the subcarriers to be allocated adjacently complicates the RA problem greatly. This paper investigates the joint multi-cell RA problem for LTE uplink. We model the uplink RA and ICI mitigation problem using pure binary-integer programming (BIP), with integrative consideration of all users' channel state information (CSI). The advantage of the pure BIP model is that it can be solved by branch-and-bound search (BBS) algorithm or other BIP solving algorithms, rather than resorting to exhaustive search. The system-level simulation results show that it yields 14.83% and 22.13% gains over single-cell optimal RA in average spectrum efficiency and 5th percentile of user throughput, respectively.Comment: Accepted to IEEE Vehicular Technology Conference (VTC Spring), Seoul, Korea, May, 201

    A Framework for Uplink Intercell Interference Modeling with Channel-Based Scheduling

    Full text link
    This paper presents a novel framework for modeling the uplink intercell interference (ICI) in a multiuser cellular network. The proposed framework assists in quantifying the impact of various fading channel models and state-of-the-art scheduling schemes on the uplink ICI. Firstly, we derive a semianalytical expression for the distribution of the location of the scheduled user in a given cell considering a wide range of scheduling schemes. Based on this, we derive the distribution and moment generating function (MGF) of the uplink ICI considering a single interfering cell. Consequently, we determine the MGF of the cumulative ICI observed from all interfering cells and derive explicit MGF expressions for three typical fading models. Finally, we utilize the obtained expressions to evaluate important network performance metrics such as the outage probability, ergodic capacity, and average fairness numerically. Monte-Carlo simulation results are provided to demonstrate the efficacy of the derived analytical expressions.Comment: IEEE Transactions on Wireless Communications, 2013. arXiv admin note: substantial text overlap with arXiv:1206.229

    Control and data channel resource allocation in OFDMA heterogeneous networks

    Get PDF
    This paper investigates the downlink resource allocation problem in Orthogonal Frequency Division Multiple Access (OFDMA) Heterogeneous Networks (HetNets) consisting of macro cells and small cells sharing the same frequency band. Dense deployment of small cells overlaid by a macro layer is considered to be one of the most promising solutions for providing hotspot coverage in future 5G networks. The focus is to devise an optimised policy for small cells’ access to the shared spectrum, in terms of their transmissions, in order to keep small cell served users sum data rate at high levels while ensuring that certain level of quality of service (QoS) for the macro cell users in the vicinity of small cells is provided. Both data and control channel constraints are considered, to ensure that not only the macro cell users’ data rate demands are met, but also a certain level of Bit Error Rate (BER) is ensured for the control channel information. Control channel reliability is especially important as it holds key information to successfully decode the data channel. The problem is addressed by our proposed linear binary integer programming heuristic algorithm which maximises the small cells utility while ensuring the macro users imposed constraints. To further reduce the computational complexity, we propose a progressive interference aware low complexity heuristic solution. Discussion is also presented for the implementation possibility of our proposed algorithms in a practical network. The performance of both the proposed algorithms is compared with the conventional Reuse-1 scheme under different fading conditions and small cell loads. Results show a negligible drop in small cell performance for our proposed schemes, as a trade-off for ensuring all macro users data rate demands, while Reuse-1 scheme can even lead up to 40 % outage when control region of the small cells in heavily loaded

    Degrees of Freedom and Achievable Rate of Wide-Band Multi-cell Multiple Access Channels With No CSIT

    Full text link
    This paper considers a KK-cell multiple access channel with inter-symbol interference. The primary finding of this paper is that, without instantaneous channel state information at the transmitters (CSIT), the sum degrees-of-freedom (DoF) of the considered channel is β1βK\frac{\beta -1}{\beta}K with β2\beta \geq 2 when the number of users per cell is sufficiently large, where β\beta is the ratio of the maximum channel-impulse-response (CIR) length of desired links to that of interfering links in each cell. Our finding implies that even without instantaneous CSIT, \textit{interference-free DoF per cell} is achievable as β\beta approaches infinity with a sufficiently large number of users per cell. This achievability is shown by a blind interference management method that exploits the relativity in delay spreads between desired and interfering links. In this method, all inter-cell-interference signals are aligned to the same direction by using a discrete-Fourier-transform-based precoding with cyclic prefix that only depends on the number of CIR taps. Using this method, we also characterize the achievable sum rate of the considered channel, in a closed-form expression.Comment: Submitted to IEEE Transactions on Communication

    Leveraging intelligence from network CDR data for interference aware energy consumption minimization

    Get PDF
    Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo

    Analysis and mitigation of carrier frequency offset for uplink of OFDMA

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is being used in many wireless standards because of its immunity to multipath fading, high spectral efficiency and simple implementation, making it suitable for high data rate multimedia wireless applications. One of the significant drawbacks of the OFDM is its sensitivity to Carrier Frequency Offset (CFO). CFO causes Inter Carrier Interference (ICI) between subcarriers and Multiple User Interference (MUI) at Uplink between different users. ICI and MUI at uplink cause significant degradation in the performance of the receiver, therefore, to improve the receiver performance up to acceptable level, compensation of the CFO becomes necessary. In this research, Suppression of MUI by Minimum Mean Squared Error (MMSE) Feedback Equalizer in frequency domain which was originally proposed for Single Carrier- Frequency Domain Multiple Access (SC-FDMA) has been studied for Uplink of Orthogonal Frequency Division Multiple Access (OFDMA). However, calculation of MUI power required in this algorithm for all users impose very high computational burden on the receiver. In the proposed Low Complexity MUI Suppression by MMSE Equalization for Uplink of OFDMA approximation to the calculation of MUI power is applied to reduce its complexity. Simulation result & calculated complexity show that proposed method obtains good performance with much lower complexity
    corecore