46 research outputs found

    A comprehensive study on pathfinding techniques for robotics and video games

    Get PDF
    This survey provides an overview of popular pathfinding algorithms and techniques based on graph generation problems. We focus on recent developments and improvements in existing techniques and examine their impact on robotics and the video games industry. We have categorized pathfinding algorithms based on a 2D/3D environment search. The aim of this paper is to provide researchers with a thorough background on the progress made in the last 10 years in this field, summarize the principal techniques, and describe their results. We also give our expectations for future trends in this field and discuss the possibility of using pathfinding techniques in more extensive areas

    Exploring the resource recovery potentials of municipal solid waste: a review of solid wastes composting in developing countries

    Get PDF
    Population explosion, high urbanization and improved living standards have induced rapid changes in quantities and materiacompositions of solid waste generation globally. Until recently solid waste disposal in landfills and open dump sites waconsidered more economical and it is the most widely used methods in developing countries. Hence the potentials in the othealternative methods such as the resource recovery and recycling and their integration into waste management have been scarcelassessed. However, the ever growing challenges posed by the rapidly increasing quantities and compositions of solid wastes ideveloping countries led to the searching for alternative waste disposal methods. In this regard the paper presented an assessmenof the resource potentials of municipal solid waste materials arising from cities in developing countries as a strategy fosustainable solid waste management. Using published data on solid waste composition the paper has identified that there is higpotentials of composting in the solid waste stream from cities in developing countries. In conclusion, it recommended the recoverof organic waste material and papers for composting and the recycling of plastic, metals, textiles and others to explore their resource recovery potentials. This will largely reduce the ultimate quantities of solid waste for disposal and lower the operatincosts. This strategy will achieve sustainable waste management in developing countries. It is hoped that the paper has provided useful guide for wastes management policy decisions in developing countries

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p

    Modelling normative awareness:First considerations

    Get PDF

    A Review of Norms and Normative Multiagent Systems

    Get PDF
    Norms and normative multiagent systems have become the subjects of interest for many researchers. Such interest is caused by the need for agents to exploit the norms in enhancing their performance in a community. The term norm is used to characterize the behaviours of community members. The concept of normative multiagent systems is used to facilitate collaboration and coordination among social groups of agents. Many researches have been conducted on norms that investigate the fundamental concepts, definitions, classification, and types of norms and normative multiagent systems including normative architectures and normative processes. However, very few researches have been found to comprehensively study and analyze the literature in advancing the current state of norms and normative multiagent systems. Consequently, this paper attempts to present the current state of research on norms and normative multiagent systems and propose a norm’s life cycle model based on the review of the literature. Subsequently, this paper highlights the significant areas for future work

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    Micro-intelligence for the IoT: logic-based models and technologies

    Get PDF
    Computing is moving towards pervasive, ubiquitous environments in which devices, software agents and services are all expected to seamlessly integrate and cooperate in support of human objectives. An important next step for pervasive computing is the integration of intelligent agents that employ knowledge and reasoning to understand the local context and share this information in support of intelligent applications and interfaces. Such scenarios, characterised by "computation everywhere around us", require on the one hand software components with intelligent behaviour in terms of objectives and context, and on the other their integration so as to produce social intelligence. Logic Programming (LP) has been recognised as a natural paradigm for addressing the needs of distributed intelligence. Yet, the development of novel architectures, in particular in the context Internet of Things (IoT), and the emergence of new domains and potential applications, are creating new research opportunities where LP could be exploited, when suitably coupled with agent technologies and methods so that it can fully develop its potential in the new context. In particular, the LP and its extensions can act as micro-intelligence sources for the IoT world, both at the individual and the social level, provided that they are reconsidered in a renewed architectural vision. Such micro-intelligence sources could deal with the local knowledge of the devices taking into account the domain specificity of each environment. The goal of this thesis is to re-contextualise LP and its extensions in these new domains as a source of micro-intelligence for the IoT world, envisioning a large number of small computational units distributed and situated in the environment, thus promoting the local exploitation of symbolic languages with inference capabilities. The topic is explored in depth and the effectiveness of novel LP models and architectures -and of the corresponding technology- expressing the concept of micro-intelligence is tested

    Effective Cooperation and Scalability in Multi-Robot Teams for Automatic Patrolling of Infrastructures

    Get PDF
    Tese de doutoramento em Engenharia Electrotécnica e de Computadores, apresentada ao Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Ciências e Tecnologia da Universidade de CoimbraIn the digital era that we live in, advances in technology have proliferated throughout our society, quickening the completion of tasks that were painful in the old days, improving solutions to the everyday problems that we face, and generally assisting human beings both in their professional and personal life. Robotics is a clear example of a broad technological field that evolves every day. In fact, scientists predict that in the upcoming few decades, robots will naturally interact and coexist alongside human beings. While it is true that robots already have a strong presence in industrial environments, e.g., robotic arms for manufacturing, the average person still looks upon robots with suspicion, since they are not acquainted by such type of technology. In this thesis, the author deploys teams of mobile robots in indoor scenarios to cooperatively perform patrolling missions, which represents an effort to bring robots closer to humans and assist them in monotonous or repetitive tasks, such as supervising and monitoring indoor infrastructures or simply cooperatively cleaning floors. In this context, the team of robots should be able to sense the environment, localize and navigate autonomously between way points while avoiding obstacles, incorporate any number of robots, communicate actions in a distributed way and being robust not only to agent failures but also communication failures, so as to effectively coordinate to achieve optimal collective performance. The referred capabilities are an evidence that such systems can only prove their reliability in real-world environments if robots are endowed with intelligence and autonomy. Thus, the author follows a line of research where patrolling units have the necessary tools for intelligent decision-making, according to the information of the mission, the environment and teammates' actions, using distributed coordination architectures. An incremental approach is followed. Firstly, the problem is presented and the literature is deeply studied in order to identify potential weaknesses and research opportunities, backing up the objectives and contributions proposed in this thesis. Then, problem fundamentals are described and benchmarking of multi-robot patrolling algorithms in realistic conditions is conducted. In these earlier stages, the role of different parameters of the problem, like environment connectivity, team size and strategy philosophy, will become evident through extensive empirical results and statistical analysis. In addition, scalability is deeply analyzed and tied with inter-robot interference and coordination, imposed by each patrolling strategy. After gaining sensibility to the problem, preliminary models for multi-robot patrol with special focus on real-world application are presented, using a Bayesian inspired formalism. Based on these, distributed strategies that lead to superior team performance are described. Interference between autonomous agents is explicitly dealt with, and the approaches are shown to scale to large teams of robots. Additionally, the robustness to agent and communication failures is demonstrated, as well as the flexibility of the model proposed. In fact, by later generalizing the model with learning agents and maintaining memory of past events, it is then shown that these capabilities can be inherited, while at the same time increasing team performance even further and fostering adaptability. This is verified in simulation experiments and real-world results in a large indoor scenario. Furthermore, since the issue of team scalability is highly in focus in this thesis, a method for estimating the optimal team size in a patrolling mission, according to the environment topology is proposed. Upper bounds for team performance prior to the mission start are provided, supporting the choice of the number of robots to be used so that temporal constraints can be satisfied. All methods developed in this thesis are tested and corroborated by experimental results, showing the usefulness of employing cooperative teams of robots in real-world environments and the potential for similar systems to emerge in our society.FCT - SFRH/BD/64426/200
    corecore