77 research outputs found

    Various Approaches of Support vector Machines and combined Classifiers in Face Recognition

    Get PDF
    In this paper we present the various approaches used in face recognition from 2001-2012.because in last decade face recognition is using in many fields like Security sectors, identity authentication. Today we need correct and speedy performance in face recognition. This time the face recognition technology is in matured stage because research is conducting continuously in this field. Some extensions of Support vector machine (SVM) is reviewed that gives amazing performance in face recognition.Here we also review some papers of combined classifier approaches that is also a dynamic research area in a pattern recognition

    Wavelet-Based Kernel Construction for Heart Disease Classification

    Get PDF
    Β© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERINGHeart disease classification plays an important role in clinical diagnoses. The performance improvement of an Electrocardiogram classifier is therefore of great relevance, but it is a challenging task too. This paper proposes a novel classification algorithm using the kernel method. A kernel is constructed based on wavelet coefficients of heartbeat signals for a classifier with high performance. In particular, a wavelet packet decomposition algorithm is applied to heartbeat signals to obtain the Approximation and Detail coefficients, which are used to calculate the parameters of the kernel. A principal component analysis algorithm with the wavelet-based kernel is employed to choose the main features of the heartbeat signals for the input of the classifier. In addition, a neural network with three hidden layers in the classifier is utilized for classifying five types of heart disease. The electrocardiogram signals in nine patients obtained from the MIT-BIH database are used to test the proposed classifier. In order to evaluate the performance of the classifier, a multi-class confusion matrix is applied to produce the performance indexes, including the Accuracy, Recall, Precision, and F1 score. The experimental results show that the proposed method gives good results for the classification of the five mentioned types of heart disease.Peer reviewedFinal Published versio

    Cluster-Based Supervised Classification

    Get PDF

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Spectral and spatial methods for the classification of urban remote sensing data

    Get PDF
    Lors de ces travaux, nous nous sommes intΓ©ressΓ©s au problΓ¨me de la classification supervisΓ©e d'images satellitaires de zones urbaines. Les donnΓ©es traitΓ©es sont des images optiques Γ  trΓ¨s hautes rΓ©solutions spatiales: donnΓ©es panchromatiques Γ  trΓ¨s haute rΓ©solution spatiale (IKONOS, QUICKBIRD, simulations PLEIADES) et des images hyperspectrales (DAIS, ROSIS). Deux stratΓ©gies ont Γ©tΓ© proposΓ©es. La premiΓ¨re stratΓ©gie consiste en une phase d'extraction de caractΓ©ristiques spatiales et spectrales suivie d'une phase de classification. Ces caractΓ©ristiques sont extraites par filtrages morphologiques : ouvertures et fermetures gΓ©odΓ©siques et filtrages surfaciques auto-complΓ©mentaires. La classification est rΓ©alisΓ©e avec les machines Γ  vecteurs supports (SVM) non linΓ©aires. Nous proposons la dΓ©finition d'un noyau spatio-spectral utilisant de maniΓ¨re conjointe l'information spatiale et l'information spectrale extraites lors de la premiΓ¨re phase. La seconde stratΓ©gie consiste en une phase de fusion de donnΓ©es pre- ou post-classification. Lors de la fusion postclassification, divers classifieurs sont appliquΓ©s, Γ©ventuellement sur plusieurs donnΓ©es issues d'une mΓͺme scΓ¨ne (image panchromat ique, image multi-spectrale). Pour chaque pixel, l'appartenance Γ  chaque classe est estimΓ©e Γ  l'aide des classifieurs. Un schΓ©ma de fusion adaptatif permettant d'utiliser l'information sur la fiabilitΓ© locale de chaque classifieur, mais aussi l'information globale disponible a priori sur les performances de chaque algorithme pour les diffΓ©rentes classes, est proposΓ©. Les diffΓ©rents rΓ©sultats sont fusionnΓ©s Γ  l'aide d'opΓ©rateurs flous. Les mΓ©thodes ont Γ©tΓ© validΓ©es sur des images rΓ©elles. Des amΓ©liorations significatives sont obtenues par rapport aux mΓ©thodes publiΓ©es dans la litterature

    Kernel Feature Extraction Methods for Remote Sensing Data Analysis

    Get PDF
    Technological advances in the last decades have improved our capabilities of collecting and storing high data volumes. However, this makes that in some fields, such as remote sensing several problems are generated in the data processing due to the peculiar characteristics of their data. High data volume, high dimensionality, heterogeneity and their nonlinearity, make that the analysis and extraction of relevant information from these images could be a bottleneck for many real applications. The research applying image processing and machine learning techniques along with feature extraction, allows the reduction of the data dimensionality while keeps the maximum information. Therefore, developments and applications of feature extraction methodologies using these techniques have increased exponentially in remote sensing. This improves the data visualization and the knowledge discovery. Several feature extraction methods have been addressed in the literature depending on the data availability, which can be classified in supervised, semisupervised and unsupervised. In particular, feature extraction can use in combination with kernel methods (nonlinear). The process for obtaining a space that keeps greater information content is facilitated by this combination. One of the most important properties of the combination is that can be directly used for general tasks including classification, regression, clustering, ranking, compression, or data visualization. In this Thesis, we address the problems of different nonlinear feature extraction approaches based on kernel methods for remote sensing data analysis. Several improvements to the current feature extraction methods are proposed to transform the data in order to make high dimensional data tasks easier, such as classification or biophysical parameter estimation. This Thesis focus on three main objectives to reach these improvements in the current feature extraction methods: The first objective is to include invariances into supervised kernel feature extraction methods. Throughout these invariances it is possible to generate virtual samples that help to mitigate the problem of the reduced number of samples in supervised methods. The proposed algorithm is a simple method that essentially generates new (synthetic) training samples from available labeled samples. These samples along with original samples should be used in feature extraction methods obtaining more independent features between them that without virtual samples. The introduction of prior knowledge by means of the virtual samples could obtain classification and biophysical parameter estimation methods more robust than without them. The second objective is to use the generative kernels, i.e. probabilistic kernels, that directly learn by means of clustering techniques from original data by finding local-to-global similarities along the manifold. The proposed kernel is useful for general feature extraction purposes. Furthermore, the kernel attempts to improve the current methods because the kernel not only contains labeled data information but also uses the unlabeled information of the manifold. Moreover, the proposed kernel is parameter free in contrast with the parameterized functions such as, the radial basis function (RBF). Using probabilistic kernels is sought to obtain new unsupervised and semisupervised methods in order to reduce the number and cost of labeled data in remote sensing. Third objective is to develop new kernel feature extraction methods for improving the features obtained by the current methods. Optimizing the functional could obtain improvements in new algorithm. For instance, the Optimized Kernel Entropy Component Analysis (OKECA) method. The method is based on the Independent Component Analysis (ICA) framework resulting more efficient than the standard Kernel Entropy Component Analysis (KECA) method in terms of dimensionality reduction. In this Thesis, the methods are focused on remote sensing data analysis. Nevertheless, feature extraction methods are used to analyze data of several research fields whereas data are multidimensional. For these reasons, the results are illustrated into experimental sequence. First, the projections are analyzed by means of Toy examples. The algorithms are tested through standard databases with supervised information to proceed to the last step, the analysis of remote sensing images by the proposed methods

    Statistical modelling for facial expression dynamics

    Get PDF
    PhDOne of the most powerful and fastest means of relaying emotions between humans are facial expressions. The ability to capture, understand and mimic those emotions and their underlying dynamics in the synthetic counterpart is a challenging task because of the complexity of human emotions, different ways of conveying them, non-linearities caused by facial feature and head motion, and the ever critical eye of the viewer. This thesis sets out to address some of the limitations of existing techniques by investigating three components of expression modelling and parameterisation framework: (1) Feature and expression manifold representation, (2) Pose estimation, and (3) Expression dynamics modelling and their parameterisation for the purpose of driving a synthetic head avatar. First, we introduce a hierarchical representation based on the Point Distribution Model (PDM). Holistic representations imply that non-linearities caused by the motion of facial features, and intrafeature correlations are implicitly embedded and hence have to be accounted for in the resulting expression space. Also such representations require large training datasets to account for all possible variations. To address those shortcomings, and to provide a basis for learning more subtle, localised variations, our representation consists of tree-like structure where a holistic root component is decomposed into leaves containing the jaw outline, each of the eye and eyebrows and the mouth. Each of the hierarchical components is modelled according to its intrinsic functionality, rather than the final, holistic expression label. Secondly, we introduce a statistical approach for capturing an underlying low-dimension expression manifold by utilising components of the previously defined hierarchical representation. As Principal Component Analysis (PCA) based approaches cannot reliably capture variations caused by large facial feature changes because of its linear nature, the underlying dynamics manifold for each of the hierarchical components is modelled using a Hierarchical Latent Variable Model (HLVM) approach. Whilst retaining PCA properties, such a model introduces a probability density model which can deal with missing or incomplete data and allows discovery of internal within cluster structures. All of the model parameters and underlying density model are automatically estimated during the training stage. We investigate the usefulness of such a model to larger and unseen datasets. Thirdly, we extend the concept of HLVM model to pose estimation to address the non-linear shape deformations and definition of the plausible pose space caused by large head motion. Since our head rarely stays still, and its movements are intrinsically connected with the way we perceive and understand the expressions, pose information is an integral part of their dynamics. The proposed 3 approach integrates into our existing hierarchical representation model. It is learned using sparse and discreetly sampled training dataset, and generalises to a larger and continuous view-sphere. Finally, we introduce a framework that models and extracts expression dynamics. In existing frameworks, explicit definition of expression intensity and pose information, is often overlooked, although usually implicitly embedded in the underlying representation. We investigate modelling of the expression dynamics based on use of static information only, and focus on its sufficiency for the task at hand. We compare a rule-based method that utilises the existing latent structure and provides a fusion of different components with holistic and Bayesian Network (BN) approaches. An Active Appearance Model (AAM) based tracker is used to extract relevant information from input sequences. Such information is subsequently used to define the parametric structure of the underlying expression dynamics. We demonstrate that such information can be utilised to animate a synthetic head avatar. Submitte

    Assisting the training of deep neural networks with applications to computer vision

    Get PDF
    [eng] Deep learning has recently been enjoying an increasing popularity due to its success in solving challenging tasks. In particular, deep learning has proven to be effective in a large variety of computer vision tasks, such as image classification, object recognition and image parsing. Contrary to previous research, which required engineered feature representations, designed by experts, in order to succeed, deep learning attempts to learn representation hierarchies automatically from data. More recently, the trend has been to go deeper with representation hierarchies. Learning (very) deep representation hierarchies is a challenging task, which involves the optimization of highly non- convex functions. Therefore, the search for algorithms to ease the learning of (very) deep representation hierarchies from data is extensive and ongoing. In this thesis, we tackle the challenging problem of easing the learning of (very) deep representation hierarchies. We present a hyper-parameter free, off-the-shelf, simple and fast unsupervised algorithm to discover hidden structure from the input data by enforcing a very strong form of sparsity. We study the applicability and potential of the algorithm to learn representations of varying depth in a handful of applications and domains, highlighting the ability of the algorithm to provide discriminative feature representations that are able to achieve top performance. Yet, while emphasizing the great value of unsupervised learning methods when labeled data is scarce, the recent industrial success of deep learning has revolved around supervised learning. Supervised learning is currently the focus of many recent research advances, which have shown to excel at many computer vision tasks. Top performing systems often involve very large and deep models, which are not well suited for applications with time or memory limitations. More in line with the current trends, we engage in making top performing models more efficient, by designing very deep and thin models. Since training such very deep models still appears to be a challenging task, we introduce a novel algorithm that guides the training of very thin and deep models by hinting their intermediate representations. Very deep and thin models trained by the proposed algorithm end up extracting feature representations that are comparable or even better performing than the ones extracted by large state-of-the-art models, while compellingly reducing the time and memory consumption of the model
    • …
    corecore