4 research outputs found

    Trojans in Early Design Steps—An Emerging Threat

    Get PDF
    Hardware Trojans inserted by malicious foundries during integrated circuit manufacturing have received substantial attention in recent years. In this paper, we focus on a different type of hardware Trojan threats: attacks in the early steps of design process. We show that third-party intellectual property cores and CAD tools constitute realistic attack surfaces and that even system specification can be targeted by adversaries. We discuss the devastating damage potential of such attacks, the applicable countermeasures against them and their deficiencies

    Resilience of an embedded architecture using hardware redundancy

    Get PDF
    In the last decade the dominance of the general computing systems market has being replaced by embedded systems with billions of units manufactured every year. Embedded systems appear in contexts where continuous operation is of utmost importance and failure can be profound. Nowadays, radiation poses a serious threat to the reliable operation of safety-critical systems. Fault avoidance techniques, such as radiation hardening, have been commonly used in space applications. However, these components are expensive, lag behind commercial components with regards to performance and do not provide 100% fault elimination. Without fault tolerant mechanisms, many of these faults can become errors at the application or system level, which in turn, can result in catastrophic failures. In this work we study the concepts of fault tolerance and dependability and extend these concepts providing our own definition of resilience. We analyse the physics of radiation-induced faults, the damage mechanisms of particles and the process that leads to computing failures. We provide extensive taxonomies of 1) existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-art electronics, analysing and comparing their characteristics. We propose a detailed model of faults and provide a classification of the different types of faults at various levels. We introduce an algorithm of fault tolerance and define the system states and actions necessary to implement it. We introduce novel hardware and system software techniques that provide a more efficient combination of reliability, performance and power consumption than existing techniques. We propose a new element of the system called syndrome that is the core of a resilient architecture whose software and hardware can adapt to reliable and unreliable environments. We implement a software simulator and disassembler and introduce a testing framework in combination with ERA’s assembler and commercial hardware simulators

    Investigation into Detection of Hardware Trojans on Printed Circuit Boards

    Get PDF
    The modern semiconductor device manufacturing flow is becoming increasingly vulnerable to malicious implants called Hardware Trojans (HT). With HTs becoming stealthier, a need for more accurate and efficient detection methods is becoming increasingly crucial at both Integrated Circuit (IC) and Printed Circuit Board (PCB) levels. While HT detection at an IC level has been widely studied, there is still very limited research on detecting and preventing HTs implanted on PCBs. In recent years the rise of outsourcing design and fabrication of electronics, including PCBs, to third parties has dramatically increased the possibility of malicious alteration and consequently the security risk for systems incorporating PCBs. Providing mechanical support for the electrical interconnections between different components, PCBs are an important part of electronic systems. Modern, complex and highly integrated designs may contain up to thirty layers, with concealed micro-vias and embedded passive components. An adversary can aim to modify the PCB design by tampering the copper interconnections or inserting extra components in an internal layer of a multi-layer board. Similar to its IC counterpart, a PCB HT can, among other things, cause system failure or leakage of private information. The disruptive actions of a carefully designed HT attack can have catastrophic implications and should therefore be taken seriously by industry, academia and the government. This thesis gives an account of work carried out in three projects concerned with HT detection on a PCB. In the first contribution a power analysis method is proposed for detecting HT components, implanted on the surface or otherwise, consuming power from the power distribution network. The assumption is that any HT device actively tampering or eavesdropping on the signals in the PCB circuit will consume electrical power. Harvesting this side-channel effect and observing the fluctuations of power consumption on the PCB power distribution network enables evincing the HT. Using a purpose-built PCB prototype, an experimental setup is developed for verification of the methodology. The results confirm the ability to detect alien components on a PCB without interference with its main functionality. In the second contribution the monitoring methodology is further developed by applying machine learning (ML) techniques to detect stealthier HTs, consuming power from I/O ports of legitimate ICs on the PCB. Two algorithms, One-Class Support Vector Machine (SVM) and Local Outlier Factor (LOF), are implemented on the legitimate power consumption data harvested experimentally from the PCB prototype. Simulation results are validated through real-life measurements and experiments are carried out on the prototype PCB. For validation of the ML classification models, one hundred categories of HTs are modelled and inserted into the datasets. Simulation results show that using the proposed methodology an HT can be detected with high prediction accuracy (F1-score at 99% for a 15 mW HT). Further, the developed ML model is uploaded to the prototype PCB for experimental validation. The results show consistency between simulations and experiments, with an average discrepancy of ±5.9% observed between One-Class SVM simulations and real-life experiments. The machine learning models developed for HT detection are low-cost in terms of memory (around 27 KB). In the third contribution an automated visual inspection methodology is proposed for detecting HTs on the surface of a PCB. It is based on a combination of conventional computer vision techniques and a dual tower Siamese Neural Network (SNN), modelled in a three stage pipeline. In the interest of making the proposed methodology broadly applicable a particular emphasis is made on the imaging modality of choice, whereby a regular digital optical camera is chosen. The dataset of PCB images is developed in a controlled environment of a photographic tent. The novelty in this work is that, instead of a generic production fault detection, the algorithm is optimised and trained specifically for implanted HT component detection on a PCB, be it active or passive. The proposed HT detection methodology is trained and tested with three groups of HTs, categorised based on their surface area, ranging from 4 mm² to 280 mm² and above. The results show that it is possible to reach effective detection accuracy of 95.1% for HTs as small as 4 mm². In case of HTs with surface area larger than 280 mm² the detection accuracy is around 96.1%, while the average performance across all HT groups is 95.6%
    corecore