2,674 research outputs found

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    Authentication Algorithm for Portable Embedded Systems using PUFs

    Get PDF
    Physical Unclonable Functions (PUFs) are circuits that exploit chip-unique features to be used as signatures which can be used as good silicon biometrics. These signatures are based on semiconductor fabrication variations that are very difficult to control or reproduce. These chipunique signatures together with strong challenge-response authentication algorithm can be used to authenticate and secure chips. This paper expands the security avenues covered by PUF and FPGAs by introducing a new class of concept called 201C;Soft PUFs.201D; This scheme propose robust challenge- response authentication solution based on a PUF device that provides stronger security guarantees to the user than what previously could be achieved. By exploiting the silicon uniqueness of each FPGA device and incorporating a special authentication algorithms in existing FPGA fabric, FPGA based embedded systems can be used for new security-oriented and network- oriented applications that were not previously possible or thought of

    e-EMV: Emulating EMV for Internet payments using Trusted Computing technology v-2

    Get PDF
    The introduction of EMV-compliant payment cards, with their improved cardholder verification and card authentication capabilities, has resulted in a dramatic reduction in the levels of fraud seen at Point of Sale (PoS) terminals across Europe. However, this reduction has been accompanied by an alarming increase in the level of fraud associated with Internet-based Card Not Present (CNP) transactions. This increase is largely attributable to the weaker authentication pro- cedures involved in CNP transactions. This paper shows how the functionality associated with EMV-compliant payment cards can be securely emulated in software on platforms supporting Trusted Com- puting technology. We describe a detailed system architecture encom- passing user enrollment, card deployment (in the form of software), card activation, and subsequent transaction processing. Our proposal is compatible with the existing EMV transaction processing architec- ture, and thus integrates fully and naturally with already deployed EMV infrastructure. We show that our proposal, which effectively makes available the full security of PoS transactions for Internet-based CNP transactions, has the potential to significantly reduce the oppor- tunity for fraudulent CNP transactions

    A Survey on Security Threats and Countermeasures in IEEE Test Standards

    Get PDF
    International audienceEditor's note: Test infrastructure has been shown to be a portal for hackers. This article reviews the threats and countermeasures for IEEE test infrastructure standards

    Anonymity and trust in the electronic world

    Get PDF
    Privacy has never been an explicit goal of authorization mechanisms. The traditional approach to authorisation relies on strong authentication of a stable identity using long term credentials. Audit is then linked to authorization via the same identity. Such an approach compels users to enter into a trust relationship with large parts of the system infrastructure, including entities in remote domains. In this dissertation we advance the view that this type of compulsive trust relationship is unnecessary and can have undesirable consequences. We examine in some detail the consequences which such undesirable trust relationships can have on individual privacy, and investigate the extent to which taking a unified approach to trust and anonymity can actually provide useful leverage to address threats to privacy without compromising the principal goals of authentication and audit. We conclude that many applications would benefit from mechanisms which enabled them to make authorization decisions without using long-term credentials. We next propose specific mechanisms to achieve this, introducing a novel notion of a short-lived electronic identity, which we call a surrogate. This approach allows a localisation of trust and entities are not compelled to transitively trust other entities in remote domains. In particular, resolution of stable identities needs only ever to be done locally to the entity named. Our surrogates allow delegation, enable role-based access control policies to be enforced across multiple domains, and permit the use of non-anonymous payment mechanisms, all without compromising the privacy of a user. The localisation of trust resulting from the approach proposed in this dissertation also has the potential to allow clients to control the risks to which they are exposed by bearing the cost of relevant countermeasures themselves, rather than forcing clients to trust the system infrastructure to protect them and to bear an equal share of the cost of all countermeasures whether or not effective for them. This consideration means that our surrogate-based approach and mechanisms are of interest even in Kerberos-like scenarios where anonymity is not a requirement, but the remote authentication mechanism is untrustworthy

    Design of programmable hardware security modules for enhancing blockchain based security framework

    Get PDF
    Globalization of the chip design and manufacturing industry has imposed significant threats to the hardware security of integrated circuits (ICs). It has made ICs more susceptible to various hardware attacks. Blockchain provides a trustworthy and distributed platform to store immutable records related to the evidence of intellectual property (IP) creation, authentication of provenance, and confidential data storage. However, blockchain encounters major security challenges due to its decentralized nature of ledgers that contain sensitive data. The research objective is to design a dedicated programmable hardware security modules scheme to safeguard and maintain sensitive information contained in the blockchain networks in the context of the IC supply chain. Thus, the blockchain framework could rely on the proposed hardware security modules and separate the entire cryptographic operations within the system as stand-alone hardware units. This work put forth a novel approach that could be considered and utilized to enhance blockchain security in real-time. The critical cryptographic components in blockchain secure hash algorithm-256 (SHA-256) and the elliptic curve digital signature algorithm are designed as separate entities to enhance the security of the blockchain framework. Physical unclonable functions are adopted to perform authentication of transactions in the blockchain. Relative comparison of designed modules with existing works clearly depicts the upper hand of the former in terms of performance parameters
    • 

    corecore