218 research outputs found

    Video shot boundary detection: seven years of TRECVid activity

    Get PDF
    Shot boundary detection (SBD) is the process of automatically detecting the boundaries between shots in video. It is a problem which has attracted much attention since video became available in digital form as it is an essential pre-processing step to almost all video analysis, indexing, summarisation, search, and other content-based operations. Automatic SBD was one of the tracks of activity within the annual TRECVid benchmarking exercise, each year from 2001 to 2007 inclusive. Over those seven years we have seen 57 different research groups from across the world work to determine the best approaches to SBD while using a common dataset and common scoring metrics. In this paper we present an overview of the TRECVid shot boundary detection task, a high-level overview of the most significant of the approaches taken, and a comparison of performances, focussing on one year (2005) as an example

    High-level feature detection from video in TRECVid: a 5-year retrospective of achievements

    Get PDF
    Successful and effective content-based access to digital video requires fast, accurate and scalable methods to determine the video content automatically. A variety of contemporary approaches to this rely on text taken from speech within the video, or on matching one video frame against others using low-level characteristics like colour, texture, or shapes, or on determining and matching objects appearing within the video. Possibly the most important technique, however, is one which determines the presence or absence of a high-level or semantic feature, within a video clip or shot. By utilizing dozens, hundreds or even thousands of such semantic features we can support many kinds of content-based video navigation. Critically however, this depends on being able to determine whether each feature is or is not present in a video clip. The last 5 years have seen much progress in the development of techniques to determine the presence of semantic features within video. This progress can be tracked in the annual TRECVid benchmarking activity where dozens of research groups measure the effectiveness of their techniques on common data and using an open, metrics-based approach. In this chapter we summarise the work done on the TRECVid high-level feature task, showing the progress made year-on-year. This provides a fairly comprehensive statement on where the state-of-the-art is regarding this important task, not just for one research group or for one approach, but across the spectrum. We then use this past and on-going work as a basis for highlighting the trends that are emerging in this area, and the questions which remain to be addressed before we can achieve large-scale, fast and reliable high-level feature detection on video

    Measuring the impact of temporal context on video retrieval

    Get PDF
    In this paper we describe the findings from the K-Space interactive video search experiments in TRECVid 2007, which examined the effects of including temporal context in video retrieval. The traditional approach to presenting video search results is to maximise recall by offering a user as many potentially relevant shots as possible within a limited amount of time. ‘Context’-oriented systems opt to allocate a portion of theresults presentation space to providing additional contextual cues about the returned results. In video retrieval these cues often include temporal information such as a shot’s location within the overall video broadcast and/or its neighbouring shots. We developed two interfaces with identical retrieval functionality in order to measure the effects of such context on user performance. The first system had a ‘recall-oriented’ interface, where results from a query were presented as a ranked list of shots. The second was ‘contextoriented’, with results presented as a ranked list of broadcasts. 10 users participated in the experiments, of which 8 were novices and 2 experts. Participants completed a number of retrieval topics using both the recall-oriented and context-oriented systems

    Inexpensive fusion methods for enhancing feature detection

    Get PDF
    Recent successful approaches to high-level feature detection in image and video data have treated the problem as a pattern classification task. These typically leverage the techniques learned from statistical machine learning, coupled with ensemble architectures that create multiple feature detection models. Once created, co-occurrence between learned features can be captured to further boost performance. At multiple stages throughout these frameworks, various pieces of evidence can be fused together in order to boost performance. These approaches whilst very successful are computationally expensive, and depending on the task, require the use of significant computational resources. In this paper we propose two fusion methods that aim to combine the output of an initial basic statistical machine learning approach with a lower-quality information source, in order to gain diversity in the classified results whilst requiring only modest computing resources. Our approaches, validated experimentally on TRECVid data, are designed to be complementary to existing frameworks and can be regarded as possible replacements for the more computationally expensive combination strategies used elsewhere

    The Effectiveness of Concept Based Search for Video Retrieval

    Get PDF
    In this paper we investigate how a small number of high-level concepts\ud derived for video shots, such as Sport. Face.Indoor. etc., can be used effectively for ad hoc search in video material. We will answer the following questions: 1) Can we automatically construct concept queries from ordinary text queries? 2) What is the best way to combine evidence from single concept detectors into final search results? We evaluated algorithms for automatic concept query formulation using WordNet based concept extraction, and we evaluated algorithms for fast, on-line combination of concepts. Experimental results on data from the TREC Video 2005 workshop and 25 test users show the following. 1) Automatic query formulation through WordNet based concept extraction can achieve comparable results to user created query concepts and 2) Combination methods that take neighboring shots into account outperform more simple combination methods

    The scholarly impact of TRECVid (2003-2009)

    Get PDF
    This paper reports on an investigation into the scholarly impact of the TRECVid (TREC Video Retrieval Evaluation) benchmarking conferences between 2003 and 2009. The contribution of TRECVid to research in video retrieval is assessed by analyzing publication content to show the development of techniques and approaches over time and by analyzing publication impact through publication numbers and citation analysis. Popular conference and journal venues for TRECVid publications are identified in terms of number of citations received. For a selection of participants at different career stages, the relative importance of TRECVid publications in terms of citations vis a vis their other publications is investigated. TRECVid, as an evaluation conference, provides data on which research teams ‘scored’ highly against the evaluation criteria and the relationship between ‘top scoring’ teams at TRECVid and the ‘top scoring’ papers in terms of citations is analysed. A strong relationship was found between ‘success’ at TRECVid and ‘success’ at citations both for high scoring and low scoring teams. The implications of the study in terms of the value of TRECVid as a research activity, and the value of bibliometric analysis as a research evaluation tool, are discussed

    Query generation from multiple media examples

    Get PDF
    This paper exploits an unified media document representation called feature terms for query generation from multiple media examples, e.g. images. A feature term refers to a value interval of a media feature. A media document is therefore represented by a frequency vector about feature term appearance. This approach (1) facilitates feature accumulation from multiple examples; (2) enables the exploration of text-based retrieval models for multimedia retrieval. Three statistical criteria, minimised chi-squared, minimised AC/DC rate and maximised entropy, are proposed to extract feature terms from a given media document collection. Two textual ranking functions, KL divergence and a BM25-like retrieval model, are adapted to estimate media document relevance. Experiments on the Corel photo collection and the TRECVid 2006 collection show the effectiveness of feature term based query in image and video retrieval

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    Measuring the influence of concept detection on video retrieval

    Get PDF
    There is an increasing emphasis on including semantic concept detection as part of video retrieval. This represents a modality for retrieval quite different from metadata-based and keyframe similarity-based approaches. One of the premises on which the success of this is based, is that good quality detection is available in order to guarantee retrieval quality. But how good does the feature detection actually need to be? Is it possible to achieve good retrieval quality, even with poor quality concept detection and if so then what is the 'tipping point' below which detection accuracy proves not to be beneficial? In this paper we explore this question using a collection of rushes video where we artificially vary the quality of detection of semantic features and we study the impact on the resulting retrieval. Our results show that the impact of improving or degrading performance of concept detectors is not directly reflected as retrieval performance and this raises interesting questions about how accurate concept detection really needs to be

    So what can we actually do with content-based video retrieval?

    Get PDF
    In this talk I will give a roller-coaster survey of the state of the art in automatic video analysis, indexing, summarisation, search and browsing as demonstrated in the annual TRECVid benchmarking evaluation campaign. I will concentrate on content-based techniques for video management which form a complement to the dominant paradigm of metadata or tag-based video management and I will use example techniques to illustrate these
    corecore