2,807,535 research outputs found

    Type Ia Supernovae

    Get PDF
    Type Ia Supernovae are in many aspects still enigmatic objects. Recent years have witnessed a bonanza of supernova observations. The increased samples from dedicated searches have allowed the statistical investigation of Type Ia Supernovae as a class. The observational data on Type Ia Supernovae are very rich, and the uniform picture of a decade ago has been replaced by several correlations which connect the maximum luminosity with light curve shape, color evolution, spectral appearance, and host galaxy morphology. These correlations hold across almost the complete spectrum of Type Ia Supernovae, with a number of notable exceptions. After 150 days past maximum, however, all observed objects show the same decline rate and spectrum. Bolometric light curves are a handy tool to investigate the overall appearance of Type Ia Supernovae. The nickel masses derived this way show large variations, which combined with the dynamics from line widths, indicate that the brighter events are also coming from more massive objects. The lack of accurate distances and the uncertainty in the correction for absorption are hampering further progress. Improvements in these areas are vital for the detailed comparison of luminosities and the determination of nickel masses.Comment: 33 pages with 4 embedded figures; To appear in Astronomy and Astrophysics Revie

    SweetSpot: Near-Infrared Observations of Thirteen Type Ia Supernovae from a New NOAO Survey Probing the Nearby Smooth Hubble Flow

    Full text link
    We present 13 Type Ia supernovae (SNe Ia) observed in the restframe near-infrared (NIR) from 0.02 < z < 0.09 with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5-m telescope. With only 1-3 points per light curve and a prior on the time of maximum from the spectrum used to type the object we measure an H-band dispersion of spectroscopically normal SNe Ia of 0.164 mag. These observations continue to demonstrate the improved standard brightness of SNe Ia in H-band even with limited data. Our sample includes two SNe Ia at z ~ 0.09, which represent the most distant restframe NIR H-band observations published to date. This modest sample of 13 NIR SNe Ia represent the pilot sample for "SweetSpot" - a three-year NOAO Survey program that will observe 144 SNe Ia in the smooth Hubble flow. By the end of the survey we will have measured the relative distance to a redshift of z ~ 0.05 to 1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNe Ia in the restframe NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift.Comment: 36 pages, 8 figures, Submitted to Ap

    Sampling the Probability Distribution of Type Ia Supernova Lightcurve Parameters in Cosmological Analysis

    Get PDF
    In order to obtain robust cosmological constraints from Type Ia supernova (SN Ia) data, we have applied Markov Chain Monte Carlo (MCMC) to SN Ia lightcurve fitting. We develop a method for sampling the resultant probability density distributions (pdf) of the SN Ia lightcuve parameters in the MCMC likelihood analysis to constrain cosmological parameters, and validate it using simulated data sets. Applying this method to the Joint Lightcurve Analysis (JLA) data set of SNe Ia, we find that sampling the SN Ia lightcurve parameter pdf's leads to cosmological parameters closer to that of a flat Universe with a cosmological constant, compared to the usual practice of using only the best fit values of the SN Ia lightcurve parameters. Our method will be useful in the use of SN Ia data for precision cosmology.Comment: 9 pages, 6 figures, 4 tables. Revised version accepted by MNRA

    The Relation Between Ejecta Velocity, Intrinsic Color, and Host-Galaxy Mass for High-Redshift Type Ia Supernovae

    Full text link
    Recently, using a large low-redshift sample of Type Ia supernovae (SNe Ia), we discovered a relation between SN Ia ejecta velocity and intrinsic color that improves the distance precision of SNe Ia and reduces potential systematic biases related to dust reddening. No SN Ia cosmological results have yet made a correction for the "velocity-color" relation. To test the existence of such a relation and constrain its properties at high redshift, we examine a sample of 75 SNe Ia discovered and observed by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey and Supernova Legacy Survey (SNLS). From each spectrum, we measure ejecta velocities at maximum brightness for the Ca H&K and Si II 6355 features, v_Ca^0 and v_Si^0, respectively. Using SN light-curve parameters, we determine the intrinsic B_max - V_max for each SN. Similar to what was found at low-redshift, we find that SNe Ia with higher ejecta velocity tend to be intrinsically redder than SNe Ia with lower ejecta velocity. The distributions of ejecta velocities for SNe Ia at low and high redshift are similar, indicating that current cosmological results should have little bias related to the velocity-color relation. Additionally, we find a slight (2.4-sigma significant) trend between SN Ia ejecta velocity and host-galaxy mass such that SNe Ia in high-mass host galaxies tend to have lower ejecta velocities as probed by v_Ca^0. These results emphasize the importance of spectroscopy for SN Ia cosmology.Comment: 13 pages, 11 figures, accepted by Ap

    High-Velocity Features in Type Ia Supernova Spectra

    Full text link
    We use a sample of 58 low-redshift (z <= 0.03) Type Ia supernovae (SNe Ia) having well-sampled light curves and spectra near maximum light to examine the behaviour of high-velocity features (HVFs) in SN Ia spectra. We take advantage of the fact that Si II 6355 is free of HVFs at maximum light in all SNe Ia, allowing us to quantify the strength of HVFs by comparing the structure of these two lines. We find that the average HVF strength increases with decreasing light-curve decline rate, and rapidly declining SNe Ia (dm_15(B) >= 1.4 mag) show no HVFs in their maximum-light spectra. Comparison of HVF strength to the light-curve colour of the SNe Ia in our sample shows no evidence of correlation. We find a correlation of HVF strength with the velocity of Si II 6355 at maximum light (v_Si), such that SNe Ia with lower v_Si have stronger HVFs, while those SNe Ia firmly in the "high-velocity" (i.e., v_Si >= 12,000 km/s) subclass exhibit no HVFs in their maximum-light spectra. While v_Si and dm_15(B) show no correlation in the full sample of SNe Ia, we find a significant correlation between these quantities in the subset of SNe Ia having weak HVFs. In general, we find that slowly declining (low dm_15(B)) SNe Ia, which are more luminous and more energetic than average SNe Ia, tend to produce either high photospheric ejecta velocities (i.e., high v_Si) or strong HVFs at maximum light, but not both. Finally, we examine the evolution of HVF strength for a sample of SNe Ia having extensive pre-maximum spectroscopic coverage and find significant diversity of the pre-maximum HVF behaviour.Comment: Version accepted by MNRA
    • …
    corecore