4 research outputs found

    Latent Class Model with Application to Speaker Diarization

    Get PDF
    In this paper, we apply a latent class model (LCM) to the task of speaker diarization. LCM is similar to Patrick Kenny's variational Bayes (VB) method in that it uses soft information and avoids premature hard decisions in its iterations. In contrast to the VB method, which is based on a generative model, LCM provides a framework allowing both generative and discriminative models. The discriminative property is realized through the use of i-vector (Ivec), probabilistic linear discriminative analysis (PLDA), and a support vector machine (SVM) in this work. Systems denoted as LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid are introduced. In addition, three further improvements are applied to enhance its performance. 1) Adding neighbor windows to extract more speaker information for each short segment. 2) Using a hidden Markov model to avoid frequent speaker change points. 3) Using an agglomerative hierarchical cluster to do initialization and present hard and soft priors, in order to overcome the problem of initial sensitivity. Experiments on the National Institute of Standards and Technology Rich Transcription 2009 speaker diarization database, under the condition of a single distant microphone, show that the diarization error rate (DER) of the proposed methods has substantial relative improvements compared with mainstream systems. Compared to the VB method, the relative improvements of LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid systems are 23.5%, 27.1%, and 43.0%, respectively. Experiments on our collected database, CALLHOME97, CALLHOME00 and SRE08 short2-summed trial conditions also show that the proposed LCM-Ivec-Hybrid system has the best overall performance

    Latent Class Model with Application to Speaker Diarization

    Get PDF
    In this paper, we apply a latent class model (LCM) to the task of speaker diarization. LCM is similar to Patrick Kenny’s variational Bayes (VB) method in that it uses soft information and avoids premature hard decisions in its iterations. In contrast to the VB method, which is based on a generative model, LCM provides a framework allowing both generative and discriminative models. The discriminative property is realized through the use of i-vector (Ivec), probabilistic linear discriminative analysis (PLDA), and a support vector machine (SVM) in this work. Systems denoted as LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid are introduced. In addition, three further improvements are applied to enhance its performance. (1) Adding neighbor windows to extract more speaker information for each short segment. (2) Using a hidden Markov model to avoid frequent speaker change points. (3) Using an agglomerative hierarchical cluster to do initialization and present hard and soft priors, in order to overcome the problem of initial sensitivity. Experiments on the National Institute of Standards and Technology Rich Transcription 2009 speaker diarization database, under the condition of a single distant microphone, show that the diarization error rate (DER) of the proposed methods has substantial relative improvements compared with mainstream systems. Compared to the VB method, the relative improvements of LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid systems are 23.5%, 27.1%, and 43.0%, respectively. Experiments on our collected database, CALLHOME97, CALLHOME00, and SRE08 short2-summed trial conditions also show that the proposed LCM-Ivec-Hybrid system has the best overall performance

    Exploiting Uncertainty Information in Speaker Verification and Diarization

    Get PDF
    Tato práce se zabývá dvěma modely, které umožňují využít informace o nejistotě v úlohách automatického ověřování mluvčího a diarizace mluvčích. První model, který zvažujeme, je modifikací široce používané gaussovské pravděpodobnostní lineární diskriminační analýzy (G-PLDA), modelující rozložení vektorových reprezentací promluv nazývaných embeddingy. V G-PLDA se předpokládá, že embeddingy jsou generovány přidáním šumového vektoru navzorkovaného z Gaussova rozložení k vektoru reprezentujícímu mluvčího. Ukazujeme, že za předpokladu, že šum byl místo toho vzorkován ze Studentova T-rozdělení, model PLDA (tuto verzi nazýváme PLDA s těžkým chvostem, heavy-tail, HT-PLDA) může při rozhodnutí o ověření mluvčího využít informace o nejistotě. Náš model je koncepčně podobný modelu HT-PLDA definovanému Kennym et al. v roce 2010, ale jak ukazujeme v této práci, umožňuje rychlé skórování, zatímco původní definice HT-PLDA je značně časové a výpočetně náročná. Představujeme algoritmus pro trénování naší verze HT-PLDA jako generativního modelu a zvažujeme rovněž různé strategie diskriminativního trénování parametrů tohoto modelu. Generativně a diskriminativně trénovanou HT-PLDA testujeme na úloze ověřování mluvčího. Výsledky naznačují, že HT-PLDA funguje podobně jako standardní G-PLDA, přičemž má výhodu v odolnosti vůči změnám v předzpracování dat. Experimenty s diarizací mluvčích ukazují, že HT-PLDA poskytuje nejen lepší výsledky než základní G-PLDA, ale skóre logaritmického poměru věrohodností (log-likelihood ratio, LLR) produkovaná tímto modelem jsou lépe kalibrována. Ve druhém modelu nepovažujeme (na rozdíl od HT-PLDA) embeddingy za pozorovaná data. Místo toho jsou v tomto modelu embeddingy normálně rozložené skryté proměnné. Přesnost (precision) embeddingů nese informaci o kvalitě řečového segmentu: u čistých dlouhých segmentů by přesnost měla být vysoká a u krátkých a zašuměných promluv by měla být nízká. Ukazujeme, jak lze takové pravděpodobnostní embeddingy začlenit do skórování založeného na G-PLDA, a jak parametry skrytého embeddingu ovlivňují jeho vliv při výpočtu věrohodností s tímto modelem. V experimentech demonstrujeme, jak lze využít existující extraktor embeddingů založený na neuronové síti (NN) k produkci nikoli embeddingu, ale parametrů pravděpodobnostního rozložení embeddingu. Pravděpodobnostní embeddingy testujeme na úloze diarizace mluvčích. Výsledky ukazují, že tento model poskytuje dobře kalibrovaná skóre LLR umožňující lepší diarizaci, pokud není k dispozici vývojová datová sada pro ladění shlukovacího algoritmu.This thesis considers two models allowing to utilize uncertainty information in the tasks of Automatic Speaker Verification and Speaker Diarization. The first model we consider is a modification of the widely-used Gaussian Probabilistic Linear Discriminant Analysis (G-PLDA) that models the distribution of the vector utterance representations called embeddings. In G-PLDA, the embeddings are assumed to be generated by adding a noise vector sampled from a Gaussian distribution to a speakerdependent vector. We show that when assuming that the noise was instead sampled from a Student's T-distribution, the PLDA model (we call this version heavy-tailed PLDA) can use the uncertainty information when making the verification decisions. Our model is conceptually similar to the HT-PLDA model defined by Kenny et al. in 2010, but, as we show in this thesis, it allows for fast scoring, while the original HT-PLDA definition requires considerable time and computation resources for scoring. We present the algorithm to train our version of HT-PLDA as a generative model. Also, we consider various strategies for discriminatively training the parameters of the model. We test the performance of generatively and discriminatively trained HT-PLDA on the speaker verification task. The results indicate that HT-PLDA performs on par with the standard G-PLDA while having the advantage of being more robust against variations in the data pre-processing. Experiments on the speaker diarization demonstrate that the HT-PLDA model not only provides better performance than the G-PLDA baseline model but also has the advantage of producing better-calibrated Log-Likelihood Ratio (LLR) scores. In the second model, unlike in HT-PLDA, we do not consider the embeddings as the observed data. Instead, in this model, the embeddings are normally distributed hidden variables. The embedding precision carries the information about the quality of the speech segment: for clean long segments, the precision should be high, and for short and noisy utterances, it should be low. We show how such probabilistic embeddings can be incorporated into the G-PLDA framework and how the parameters of the hidden embedding influence its impact when computing the likelihood with this model. In the experiments, we demonstrate how to utilize an existing neural network (NN) embedding extractor to provide not embeddings but parameters of probabilistic embedding distribution. We test the performance of the probabilistic embeddings model on the speaker diarization task. The results demonstrate that this model provides well-calibrated LLR scores allowing for better diarization when no development dataset is available to tune the clustering algorithm.

    Speaker Diarization

    Get PDF
    Disertační práce se zaměřuje na téma diarizace řečníků, což je úloha zpracování řeči typicky charakterizovaná otázkou "Kdo kdy mluví?". Práce se také zabývá související úlohou detekce překrývající se řeči, která je velmi relevantní pro diarizaci. Teoretická část práce poskytuje přehled existujících metod diarizace řečníků, a to jak těch offline, tak online, a přibližuje několik problematických oblastí, které byly identifikovány v rané fázi autorčina výzkumu. V práci je také předloženo rozsáhlé srovnání existujících systémů se zaměřením na jejich uváděné výsledky. Jedna kapitola se také zaměřuje na téma překrývající se řeči a na metody její detekce. Experimentální část práce předkládá praktické výstupy, kterých bylo dosaženo. Experimenty s diarizací se zaměřovaly zejména na online systém založený na GMM a na i-vektorový systém, který měl offline i online varianty. Závěrečná sekce experimentů také přibližuje nově navrženou metodu pro detekci překrývající se řeči, která je založena na konvoluční neuronové síti.ObhájenoThe thesis focuses on the topic of speaker diarization, a speech processing task that is commonly characterized as the question "Who speaks when?". It also addresses the related task of overlapping speech detection, which is very relevant for diarization. The theoretical part of the thesis provides an overview of existing diarization approaches, both offline and online, and discusses some of the problematic areas which were identified in early stages of the author's research. The thesis also includes an extensive comparison of existing diarization systems, with focus on their reported performance. One chapter is also dedicated to the topic of overlapping speech and the methods of its detection. The experimental part of the thesis then presents the work which has been done on speaker diarization, which was focused mostly on a GMM-based online diarization system and an i-vector based system with both offline and online variants. The final section also details a newly proposed approach for detecting overlapping speech using a convolutional neural network
    corecore