2,410 research outputs found

    Hysteresis-based selective Gaussian-Mixture model for real-time background update and object detection

    Get PDF
    Background subtraction refers to background update and object detection, and it is a commonly used object segmentation technique. In this technique a background model frame is built and updated over time such that it only corresponds to static pixels of the monitored scene. Moving objects are then detected by subtracting each new frame from this background model frame. In this thesis, we propose two real-time effective techniques for video object segmentation: the first is a background subtraction technique that includes background update and object detection stages to extract object binary blobs; the second is an improved contour tracing and a new filling algorithms to extract object features such as area, compactness and irregularity. The proposed background subtraction technique effectively models the static background and detects true moving objects while retaining computational efficiency for the real-time criteria. In the background update stage of the proposed background subtraction technique, the reference background pixels are modeled as multiple color Gaussian distributions (MOGs) with a new selective matching scheme based on the combined approaches of component ordering and winner-takes-all. This matching scheme not only selects the most probable component for the first matching with new pixel data, greatly improving performance, but also simplifies pixel classification and component replacement in case of no match. Further performance improvement to background update stage is achieved by using a new simple yet functional component variance adaptation formula. A periodical weight normalization scheme is used to prevent merging temporary stopped real foreground object into the background model, and the creation of false ghosts in the foreground mask when these objects start to move again. The proposed background update technique implicitly handles both gradual illumination change and temporal clutter problems. The object detection stage uses two schemes that improve object blob quality: a new hysteresis-based component matching to reduce the amount of cracks and added shadows; and temporal motion history to preserve the integrity of moving object boundaries. In this stage, the problem of shadows and ghosts is partially addressed by the proposed hysteresis-based matching scheme, while the problems of persistent sudden illumination changes and camera perturbations are addressed at frame level depending on the percentage of pixels classified as foreground. After background subtraction the detected moving object pixels (initial foreground binary mask) are highly abstract and must be grouped together to form the actual objects. We propose an improved contour tracing and new filling algorithms for grouping object pixels. The proposed improved tracing algorithm can detect and reject dead or inner branches, false non-closed contours, noise related small contours, and then efficiently categorize each contour into inner or outer contours. The new filling algorithm is efficient and never leaks, it uses the extracted contour points and their chain-code information as seed points for horizontal line growing. Experimental results show that the proposed tracing and filling techniques improve computational performance with no tracing or filling errors compared to other reference techniques

    An edge-based approach for robust foreground detection

    Get PDF
    Foreground segmentation is an essential task in many image processing applications and a commonly used approach to obtain foreground objects from the background. Many techniques exist, but due to shadows and changes in illumination the segmentation of foreground objects from the background remains challenging. In this paper, we present a powerful framework for detections of moving objects in real-time video processing applications under various lighting changes. The novel approach is based on a combination of edge detection and recursive smoothing techniques.We use edge dependencies as statistical features of foreground and background regions and define the foreground as regions containing moving edges. The background is described by short- and long-term estimates. Experiments prove the robustness of our method in the presence of lighting changes in sequences compared to other widely used background subtraction techniques

    Electrically tunable VO2-metal metasurface for mid-infrared switching, limiting, and nonlinear isolation

    Full text link
    We demonstrate an electrically controlled metal-VO2 metasurface for the mid-wave infrared that simultaneously functions as a tunable optical switch, an optical limiter with a tunable limiting threshold, and a nonlinear optical isolator with a tunable operating range. The tunability is achieved via Joule heating through the metal comprising the metasurface, resulting in an integrated optoelectronic device. As an optical switch, the device has an experimental transmission ratio of ~100 when varying the bias current. Operating as an optical limiter, we demonstrated tunability of the limiting threshold from 20 mW to 180 mW of incident laser power. Similar degrees of tunability are also achieved for nonlinear optical isolation, which enables asymmetric (nonreciprocal) transmission.Comment: Main text + supplementar

    Advanced traffic video analytics for robust traffic accident detection

    Get PDF
    Automatic traffic accident detection is an important task in traffic video analysis due to its key applications in developing intelligent transportation systems. Reducing the time delay between the occurrence of an accident and the dispatch of the first responders to the scene may help lower the mortality rate and save lives. Since 1980, many approaches have been presented for the automatic detection of incidents in traffic videos. In this dissertation, some challenging problems for accident detection in traffic videos are discussed and a new framework is presented in order to automatically detect single-vehicle and intersection traffic accidents in real-time. First, a new foreground detection method is applied in order to detect the moving vehicles and subtract the ever-changing background in the traffic video frames captured by static or non-stationary cameras. For the traffic videos captured during day-time, the cast shadows degrade the performance of the foreground detection and road segmentation. A novel cast shadow detection method is therefore presented to detect and remove the shadows cast by moving vehicles and also the shadows cast by static objects on the road. Second, a new method is presented to detect the region of interest (ROI), which applies the location of the moving vehicles and the initial road samples and extracts the discriminating features to segment the road region. After detecting the ROI, the moving direction of the traffic is estimated based on the rationale that the crashed vehicles often make rapid change of direction. Lastly, single-vehicle traffic accidents and trajectory conflicts are detected using the first-order logic decision-making system. The experimental results using publicly available videos and a dataset provided by the New Jersey Department of Transportation (NJDOT) demonstrate the feasibility of the proposed methods. Additionally, the main challenges and future directions are discussed regarding (i) improving the performance of the foreground segmentation, (ii) reducing the computational complexity, and (iii) detecting other types of traffic accidents

    Multi-Layer Background Subtraction Based on Color and Texture

    Get PDF
    In this paper, we propose a robust multi-layer background subtraction technique which takes advantages of local texture features represented by local binary patterns (LBP) and photometric invariant color measurements in RGB color space. LBP can work robustly with respective to light variation on rich texture regions but not so efficiently on uniform regions. In the latter case, color information should overcome LBP’s limitation. Due to the illumination invariance of both the LBP feature and the selected color feature, the method is able to handle local illumination changes such as cast shadows from moving objects. Due to the use of a simple layer-based strategy, the approach can model moving background pixels with quasiperiodic flickering as well as background scenes which may vary over time due to the addition and removal of long-time stationary objects. Finally, the use of a cross-bilateral filter allows to implicitly smooth detection results over regions of similar intensity and preserve object boundaries. Numerical and qualitative experimental results on both simulated and real data demonstrate the robustness of the proposed method

    Adaptive detection and tracking using multimodal information

    Get PDF
    This thesis describes work on fusing data from multiple sources of information, and focuses on two main areas: adaptive detection and adaptive object tracking in automated vision scenarios. The work on adaptive object detection explores a new paradigm in dynamic parameter selection, by selecting thresholds for object detection to maximise agreement between pairs of sources. Object tracking, a complementary technique to object detection, is also explored in a multi-source context and an efficient framework for robust tracking, termed the Spatiogram Bank tracker, is proposed as a means to overcome the difficulties of traditional histogram tracking. As well as performing theoretical analysis of the proposed methods, specific example applications are given for both the detection and the tracking aspects, using thermal infrared and visible spectrum video data, as well as other multi-modal information sources

    Vision-Based 2D and 3D Human Activity Recognition

    Get PDF

    A Multicamera System for Gesture Tracking With Three Dimensional Hand Pose Estimation

    Get PDF
    The goal of any visual tracking system is to successfully detect then follow an object of interest through a sequence of images. The difficulty of tracking an object depends on the dynamics, the motion and the characteristics of the object as well as on the environ ment. For example, tracking an articulated, self-occluding object such as a signing hand has proven to be a very difficult problem. The focus of this work is on tracking and pose estimation with applications to hand gesture interpretation. An approach that attempts to integrate the simplicity of a region tracker with single hand 3D pose estimation methods is presented. Additionally, this work delves into the pose estimation problem. This is ac complished by both analyzing hand templates composed of their morphological skeleton, and addressing the skeleton\u27s inherent instability. Ligature points along the skeleton are flagged in order to determine their effect on skeletal instabilities. Tested on real data, the analysis finds the flagging of ligature points to proportionally increase the match strength of high similarity image-template pairs by about 6%. The effectiveness of this approach is further demonstrated in a real-time multicamera hand tracking system that tracks hand gestures through three-dimensional space as well as estimate the three-dimensional pose of the hand

    Microparticle image processing and field profile optimisation for automated Lab-On-Chip magnetophoretic analytical systems

    Get PDF
    The work described in this thesis, concerns developments to analytical microfluidic Lab-On-Chip platform originally developed by Prof Pamme's research group at the University of Hull. This work aims to move away from traditional laboratory analysis system towards a more effective system design which is fully automated and therefore potentially deployable in applications such as point of care medical diagnosis. The microfluidic chip platform comprises an external permanent magnet and chip with multiple parallel reagent streams through which magnetic micro-particles pass in sequence. These streams may include particles, analyte, fluorescent labels and wash solutions; together they facilitate an on-chip multi-step analytical procedure. Analyte concentration is measured via florescent intensity of the exiting micro-particles. This has previously been experimentally proven for more than one analytical procedure. The work described here has addressed a couple of issues which needed improvement, specifically optimizing the magnetic field and automating the measurement process. These topics are related by the fact that an optimal field will reduce anomalies such as aggregated particles which may degrade automated measurements.For this system, the optimal magnetic field is homogeneous gradient of sufficient strength to pull the particles across the width of the device during fluid transit of its length. To optimise the magnetic field, COMSOL (a Multiphysics simulation program) was used to evaluate a number of multiple magnet configurations and demonstrate an improved field profile. The simulation approach was validated against experimental data for the original single-magnet design.To analyse the results automatically, a software tool has been developed using C++ which takes image files generated during an experiment and outputs a calibration curve or specific measurement result. The process involves detection of the particles (using image segmentation) and object tracking. The intensity measurement follows the same procedure as the original manual approach, facilitating comparison, but also includes analysis of particle motion behaviour to allow automatic rejection of data from anomalous particles (e.g. stuck particles). For image segmentation a novel texture based technique called Temporal- Adaptive Median Binary Pattern (T-AMBP) combining with Three Frame Difference method to model the background for representing the foreground was proposed. This proposed approached is based on previously developed Adaptive Median Binary Pattern (AMBP) and Gaussian Mixture Model (GMM) approach for image segmentation. The proposed method successfully detects micro-particles even when they have very low fluorescent intensity, while most of the previous approaches failed and is more robust to noise and artefacts. For tracking the micro-particles, we proposed a novel algorithm called "Hybrid Meanshift", which combines Meanshift, Histogram of oriented gradients (HOG) matching and optical flow techniques. Kalman filter was also combined with it to make the tracking robust.The processing of an experimental data set for generating a calibration curve, getting effectively the same results in less than 5 minutes was demonstrated, without needing experimental experience, compared with at least 2 hours work by an experienced experimenter using the manual approach
    corecore