662 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Viscous Thin-film Models of Nanoscale Self-organization Under Ion Bombardment

    Get PDF
    For decades, it has been observed that broad-beam irradiation of semiconductor surfaces can lead to spontaneous self-organization into highly regular patterns, sometimes at length scales of only a few nanometers. Initial theory was largely based on erosion and redistribution of material occurring on fast time scales, which are able to produce good agreement with certain aspects of surface evolution. However, further experimental and theoretical work eventually led to the realization that numerous effects are active in the irradiated target, including stresses associated with ion-implantation and the accumulation of damage leading to the development of a disordered, amorphous layer atop the substrate. It was also shown that relaxation of this amorphous layer proceeds in a manner closer to viscous flow ratherthan surface diffusion on a crystal lattice. Observing the viscous character of the amorphous layer, it is natural to consider whether stress-based continuum models might help explain pattern formation under ion bombardment and the observations described above. Indeed, there are early indications from the experimental literature that this may be the case, and, at low energies (∼ 1keV), at least one experimental-theoretical study has shown that they may even dominate erosive and redistributive effects in their contribution to surface evolution. In this thesis, we develop a continuum model based on viscous thin-film flow and ion-induced stresses within the amorphous layer. This model is a composite of, and significant generalization of, a previously-studied “anisotropic plastic flow” (APF) mechanism and a previously-studied “ion-induced isotropic swelling” (IIS) mechanism. Previous work has shown that, with certain simplifying assumptions about the amorphous-crystalline interface and spatial homogeneity of anisotropic plastic flow, this mechanism produces an instability capable of predicting pattern formation beginning at 45◦ angle of incidence against the macroscopically-flat substrate, consistent with some experimental systems. Under similar simplifying assumptions, ion-induced swelling has been shown to be capable of suppressing pattern formation. Our generalizations allow the use of simulation data to inform both linear and nonlinear surface evolution due to the spatial localization of APF and IIS to certain regions of the bulk, improved treatment of the amorphous-crystalline geometry, andboundary conditions suitable to the physical systems of interest. We are then able to provide insight into several phenomena that have previously been difficult to explain, but seem to emerge naturally from a more detailed treatment of the physical system

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Towards Object-Centric Scene Understanding

    Get PDF
    Visual perception for autonomous agents continues to attract community attention due to the disruptive technologies and the wide applicability of such solutions. Autonomous Driving (AD), a major application in this domain, promises to revolutionize our approach to mobility while bringing critical advantages in limiting accident fatalities. Fueled by recent advances in Deep Learning (DL), more computer vision tasks are being addressed using a learning paradigm. Deep Neural Networks (DNNs) succeeded consistently in pushing performances to unprecedented levels and demonstrating the ability of such approaches to generalize to an increasing number of difficult problems, such as 3D vision tasks. In this thesis, we address two main challenges arising from the current approaches. Namely, the computational complexity of multi-task pipelines, and the increasing need for manual annotations. On the one hand, AD systems need to perceive the surrounding environment on different levels of detail and, subsequently, take timely actions. This multitasking further limits the time available for each perception task. On the other hand, the need for universal generalization of such systems to massively diverse situations requires the use of large-scale datasets covering long-tailed cases. Such requirement renders the use of traditional supervised approaches, despite the data readily available in the AD domain, unsustainable in terms of annotation costs, especially for 3D tasks. Driven by the AD environment nature and the complexity dominated (unlike indoor scenes) by the presence of other scene elements (mainly cars and pedestrians) we focus on the above-mentioned challenges in object-centric tasks. We, then, situate our contributions appropriately in fast-paced literature, while supporting our claims with extensive experimental analysis leveraging up-to-date state-of-the-art results and community-adopted benchmarks

    Optimization for Deep Learning Systems Applied to Computer Vision

    Get PDF
    149 p.Since the DL revolution and especially over the last years (2010-2022), DNNs have become an essentialpart of the CV field, and they are present in all its sub-fields (video-surveillance, industrialmanufacturing, autonomous driving, ...) and in almost every new state-of-the-art application that isdeveloped. However, DNNs are very complex and the architecture needs to be carefully selected andadapted in order to maximize its efficiency. In many cases, networks are not specifically designed for theconsidered use case, they are simply recycled from other applications and slightly adapted, without takinginto account the particularities of the use case or the interaction with the rest of the system components,which usually results in a performance drop.This research work aims at providing knowledge and tools for the optimization of systems based on DeepLearning applied to different real use cases within the field of Computer Vision, in order to maximizetheir effectiveness and efficiency

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Diffusion MRI tractography for oncological neurosurgery planning:Clinical research prototype

    Get PDF

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics

    Quantum correlations: a window into fundamental physics

    Get PDF
    The past century has seen many of nature's secrets unravelled by the immensely successful theories of particle physics and general relativity, frameworks in which the world is described as a collection of many quantum fields, lying on a background classical spacetime. High-energy signals, originating naturally from the cosmos, or artificially from particle accelerators, held many empirical clues in support of these descriptions. In recent years, the formidable advances in quantum control have brought to light a model-agnostic conception of physics, once thought to be merely philosophical, as an alternative path of fundamental investigations. This modern information theoretic framework, eschews any description of nature beyond the correlations between measurements predicted by quantum theory. In this thesis, three questions of fundamental physics are studied from the perspective of quantum information and quantum control.Open Acces
    corecore