1 research outputs found

    Memetic algorithms outperform evolutionary algorithms in multimodal optimisation

    Get PDF
    Memetic algorithms integrate local search into an evolutionary algorithm to combine the advantages of rapid exploitation and global optimisation. We provide a rigorous runtime analysis of memetic algorithms on the Hurdle problem, a landscape class of tunable difficulty with a “big valley structure”, a characteristic feature of many hard combinatorial optimisation problems. A parameter called hurdle width describes the length of fitness valleys that need to be overcome. We show that the expected runtime of plain evolutionary algorithms like the (1+1) EA increases steeply with the hurdle width, yielding superpolynomial times to find the optimum, whereas a simple memetic algorithm, (1+1) MA, only needs polynomial expected time. Surprisingly, while increasing the hurdle width makes the problem harder for evolutionary algorithms, it becomes easier for memetic algorithms. We further give the first rigorous proof that crossover can decrease the expected runtime in memetic algorithms. A (2+1) MA using mutation, crossover and local search outperforms any other combination of these operators. Our results demonstrate the power of memetic algorithms for problems with big valley structures and the benefits of hybridising multiple search operators
    corecore