70 research outputs found

    Dominance-Based Pareto-Surrogate for Multi-Objective Optimization

    Get PDF
    Mainstream surrogate approaches for multi-objective problems build one approximation for each objective. Mono-surrogate approaches instead aim at characterizing the Pareto front with a single model. Such an approach has been recently introduced using a mixture of regression Support Vector Machine (SVM) to clamp the current Pareto front to a single value, and one-class SVM to ensure that all dominated points will be mapped on one side of this value. A new mono-surrogate EMO approach is introduced here, relaxing the previous approach and modelling Pareto dominance within the rank-SVM framework. The resulting surrogate model is then used as a filter for offspring generation in standard Evolutionary Multi-Objective Algorithms, and is comparatively validated on a set of benchmark problems

    Stochastic and deterministic algorithms for continuous black-box optimization

    Get PDF
    Continuous optimization is never easy: the exact solution is always a luxury demand and the theory of it is not always analytical and elegant. Continuous optimization, in practice, is essentially about the efficiency: how to obtain the solution with same quality using as minimal resources (e.g., CPU time or memory usage) as possible? In this thesis, the number of function evaluations is considered as the most important resource to save. To achieve this goal, various efforts have been implemented and applied successfully. One research stream focuses on the so-called stochastic variation (mutation) operator, which conducts an (local) exploration of the search space. The efficiency of those operator has been investigated closely, which shows a good stochastic variation should be able to generate a good coverage of the local neighbourhood around the current search solution. This thesis contributes on this issue by formulating a novel stochastic variation that yields good space coverage. Algorithms and the Foundations of Software technolog

    A Fast Hypervolume Driven Selection Mechanism for Many-Objective Optimisation Problems.

    Get PDF
    Solutions to real-world problems often require the simultaneous optimisation of multiple conflicting objectives. In the presence of four or more objectives, the problem is referred to as a “many-objective optimisation problem”. A problem of this category introduces many challenges, one of which is the effective and efficient selection of optimal solutions. The hypervolume indicator (or s-metric), i.e. the size of dominated objective space, is an effective selection criterion for many-objective optimisation. The indicator is used to measure the quality of a nondominated set, and can be used to sort solutions for selection as part of the contributing hypervolume indicator. However, hypervolume based selection methods can have a very high, if not infeasible, computational cost. The present study proposes a novel hypervolume driven selection mechanism for many-objective problems, whilst maintaining a feasible computational cost. This approach, named the Hypervolume Adaptive Grid Algorithm (HAGA), uses two-phases (narrow and broad) to prevent population-wide calculation of the contributing hypervolume indicator. Instead, HAGA only calculates the contributing hypervolume indicator for grid populations, i.e. for a few solutions, which are close in proximity (in the objective space) to a candidate solution when in competition for survival. The result is a trade-off between complete accuracy in selecting the fittest individuals in regards to hypervolume quality, and a feasible computational time in many-objective space. The real-world efficiency of the proposed selection mechanism is demonstrated within the optimisation of a classifier for concealed weapon detection

    Surrogate model-based multi-objective MDO approach for partially Reusable Launch Vehicle design

    Get PDF
    International audienceReusability of the first stage of launch vehicles may offer new perspectives to lower the cost of payload injection into orbit if sufficient reliability and low refurbishment costs can be achieved. One possible option that may be explored is to design the launch vehicle first stage for both reusable and expendable uses, in order to increase the flexibility and adaptability to different target missions. This paper proposes a multi-level MDO approach to design aerospace vehicles addressing multi-mission problems. The proposed approach is focused on the design of a family of launchers for different missions sharing commonalities using multi-objective Bayesian Optimization to account for the computational cost associated with the discipline simulations. The multi-mission problem addressed in this paper considers two missions: a reusable configuration for a SSO orbit with a medium payload range and recovery of the first stage using a glider strategy; and an expendable configuration for a medium payload injected into a Geostationary Transfer Orbit (GTO). A dedicated MDO formulation introducing couplings between the missions is proposed in order to efficiently solve the multi-objective MDO problem while limiting the number of calls to the exact MDA thanks to the use of Gaussian Processes and multi-objective Efficient Global Optimization

    Multi-Objective Multidisciplinary Design Optimization Approach for Partially Reusable Launch Vehicle Design

    Get PDF
    International audienceReusability of the first stage of launch vehicles may offer new perspectives to lower the cost of payload injection into orbit if sufficient reliability and efficient refurbishment can be achieved. One possible option that may be explored is to design the vehicle first stage for both reusable and expendable uses, in order to increase the flexibility and adaptability to different target missions. This paper proposes a multilevel multidisciplinary design optimization (MDO) approach to design aerospace vehicles addressing multimission problems. The proposed approach is focused on the design of a family of launchers for different missions sharing commonalities using multi-objective MDO to account for the computational cost associated with the discipline simulations. The multimission problem addressed considers two missions: 1) a reusable configuration for a sun synchronous orbit with a medium payload range and recovery of the first stage using a gliding-back strategy; 2) an expendable configuration for a medium payload injected into a geostationary transfer orbit. A dedicated MDO formulation introducing couplings between the missions is proposed in order to efficiently solve such a coupled problem while limiting the number of calls to the exact multidisciplinary analysis thanks to the use of Gaussian processes and multi-objective efficient global optimization

    10361 Abstracts Collection and Executive Summary -- Theory of Evolutionary Algorithms

    Get PDF
    From September 5 to 10, the Dagstuhl Seminar 10361 ``Theory of Evolutionary Algorithms \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general
    • …
    corecore