1,743 research outputs found

    Machine learning techniques for arrhythmic risk stratification: a review of the literature

    Get PDF
    Ventricular arrhythmias (VAs) and sudden cardiac death (SCD) are significant adverse events that affect the morbidity and mortality of both the general population and patients with predisposing cardiovascular risk factors. Currently, conventional disease-specific scores are used for risk stratification purposes. However, these risk scores have several limitations, including variations among validation cohorts, the inclusion of a limited number of predictors while omitting important variables, as well as hidden relationships between predictors. Machine learning (ML) techniques are based on algorithms that describe intervariable relationships. Recent studies have implemented ML techniques to construct models for the prediction of fatal VAs. However, the application of ML study findings is limited by the absence of established frameworks for its implementation, in addition to clinicians’ unfamiliarity with ML techniques. This review, therefore, aims to provide an accessible and easy-to-understand summary of the existing evidence about the use of ML techniques in the prediction of VAs. Our findings suggest that ML algorithms improve arrhythmic prediction performance in different clinical settings. However, it should be emphasized that prospective studies comparing ML algorithms to conventional risk models are needed while a regulatory framework is required prior to their implementation in clinical practice

    Temporal-spatial Correlation Attention Network for Clinical Data Analysis in Intensive Care Unit

    Full text link
    In recent years, medical information technology has made it possible for electronic health record (EHR) to store fairly complete clinical data. This has brought health care into the era of "big data". However, medical data are often sparse and strongly correlated, which means that medical problems cannot be solved effectively. With the rapid development of deep learning in recent years, it has provided opportunities for the use of big data in healthcare. In this paper, we propose a temporal-saptial correlation attention network (TSCAN) to handle some clinical characteristic prediction problems, such as predicting death, predicting length of stay, detecting physiologic decline, and classifying phenotypes. Based on the design of the attention mechanism model, our approach can effectively remove irrelevant items in clinical data and irrelevant nodes in time according to different tasks, so as to obtain more accurate prediction results. Our method can also find key clinical indicators of important outcomes that can be used to improve treatment options. Our experiments use information from the Medical Information Mart for Intensive Care (MIMIC-IV) database, which is open to the public. Finally, we have achieved significant performance benefits of 2.0\% (metric) compared to other SOTA prediction methods. We achieved a staggering 90.7\% on mortality rate, 45.1\% on length of stay. The source code can be find: \url{https://github.com/yuyuheintju/TSCAN}

    Data Science in Healthcare

    Get PDF
    Data science is an interdisciplinary field that applies numerous techniques, such as machine learning, neural networks, and deep learning, to create value based on extracting knowledge and insights from available data. Advances in data science have a significant impact on healthcare. While advances in the sharing of medical information result in better and earlier diagnoses as well as more patient-tailored treatments, information management is also affected by trends such as increased patient centricity (with shared decision making), self-care (e.g., using wearables), and integrated care delivery. The delivery of health services is being revolutionized through the sharing and integration of health data across organizational boundaries. Via data science, researchers can deliver new approaches to merge, analyze, and process complex data and gain more actionable insights, understanding, and knowledge at the individual and population levels. This Special Issue focuses on how data science is used in healthcare (e.g., through predictive modeling) and on related topics, such as data sharing and data management

    QXAI: Explainable AI Framework for Quantitative Analysis in Patient Monitoring Systems

    Full text link
    Artificial Intelligence techniques can be used to classify a patient's physical activities and predict vital signs for remote patient monitoring. Regression analysis based on non-linear models like deep learning models has limited explainability due to its black-box nature. This can require decision-makers to make blind leaps of faith based on non-linear model results, especially in healthcare applications. In non-invasive monitoring, patient data from tracking sensors and their predisposing clinical attributes act as input features for predicting future vital signs. Explaining the contributions of various features to the overall output of the monitoring application is critical for a clinician's decision-making. In this study, an Explainable AI for Quantitative analysis (QXAI) framework is proposed with post-hoc model explainability and intrinsic explainability for regression and classification tasks in a supervised learning approach. This was achieved by utilizing the Shapley values concept and incorporating attention mechanisms in deep learning models. We adopted the artificial neural networks (ANN) and attention-based Bidirectional LSTM (BiLSTM) models for the prediction of heart rate and classification of physical activities based on sensor data. The deep learning models achieved state-of-the-art results in both prediction and classification tasks. Global explanation and local explanation were conducted on input data to understand the feature contribution of various patient data. The proposed QXAI framework was evaluated using PPG-DaLiA data to predict heart rate and mobile health (MHEALTH) data to classify physical activities based on sensor data. Monte Carlo approximation was applied to the framework to overcome the time complexity and high computation power requirements required for Shapley value calculations.Comment: This work has been submitted to the ELSEVIER for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Multi Disease Prediction Using HDO Machine Learning Approach

    Get PDF
    Several machine learning approaches can do predictive analytics on vast volumes of information in various sectors. Predictive analytics in health care is a challenging task. Still, it may ultimately aid physicians in making timely judgments about the health and handling of patients based on vast amounts of information. Breast cancer, diabetes, and heart-related disorders cause numerous fatalities worldwide, yet most of these decreases are attributable to an absence of appropriate screenings. The lack of remedial substructure and a short doctor-to-population proportion contribute to the issue above. Following WHO recommendations, physicians' ratio to affected persons should be in some range; India's doctor-to-public proportion indicates a doctor scarcity. Heart, cancer, and diabetes-related disorders pose a significant danger to humanity if not detected initially. Thus, early detection and identification of these disorders may save many lives. Using classification methods based on machine learning, the focus of this effort is to anticipate dangerous illnesses. Diabetes, heart disease, and breast cancer are discussed in this study. To make this effort easy and accessible to the general community, a web application for therapeutic tests has been developed that use machine learning to create illness predictions. In this study, a web application is created for illness prediction that employs the notion of machine learning-based forecasts for illnesses such as breast cancer, diabetes, and cardiovascular sickness

    Machine Learning for the Early Detection of Acute Episodes in Intensive Care Units

    Get PDF
    In Intensive Care Units (ICUs), mere seconds might define whether a patient lives or dies. Predictive models capable of detecting acute events in advance may allow for anticipated interventions, which could mitigate the consequences of those events and promote a greater number of lives saved. Several predictive models developed for this purpose have failed to meet the high requirements of ICUs. This might be due to the complexity of anomaly prediction tasks, and the inefficient utilization of ICU data. Moreover, some essential intensive care demands, such as continuous monitoring, are often not considered when developing these solutions, making them unfit to real contexts. This work approaches two topics within the mentioned problem: the relevance of ICU data used to predict acute episodes and the benefits of applying Layered Learning (LL) techniques to counter the complexity of these tasks. The first topic was undertaken through a study on the relevance of information retrieved from physiological signals and clinical data for the early detection of Acute Hypotensive Episodes (AHE) in ICUs. Then, the potentialities of LL were accessed through an in-depth analysis of the applicability of a recently proposed approach on the same topic. Furthermore, different optimization strategies enabled by LL configurations were proposed, including a new approach aimed at false alarm reduction. The results regarding data relevance might contribute to a shift in paradigm in terms of information retrieved for AHE prediction. It was found that most of the information commonly used in the literature might be wrongly perceived as valuable, since only three features related to blood pressure measures presented actual distinctive traits. On another note, the different LL-based strategies developed confirm the versatile possibilities offered by this paradigm. Although these methodologies did not promote significant performance improvements in this specific context, they can be further explored and adapted to other domains.Em Unidades de Cuidados Intensivos (UCIs), meros segundos podem ser o fator determinante entre a vida e a morte de um paciente. Modelos preditivos para a previsão de eventos adversos podem promover intervenções antecipadas, com vista à mitigação das consequências destes eventos, e traduzir-se num maior número de vidas salvas. Múltiplos modelos desenvolvidos para este propósito não corresponderam às exigências das UCIs. Isto pode dever-se à complexidade de tarefas de previsão de anomalias e à ineficiência no uso da informação gerada em UCIs. Além disto, algumas necessidades inerentes à provisão de cuidados intensivos, tais como a monitorização contínua, são muitas vezes ignoradas no desenvolvimento destas soluções, tornando-as desadequadas para contextos reais. Este projeto aborda dois tópicos dentro da problemática introduzida, nomeadamente a relevância da informação usada para prever episódios agudos, e os benefícios de técnicas de Aprendizagem em Camadas (AC) para contrariar a complexidade destas tarefas. Numa primeira fase, foi conduzido um estudo sobre o impacto de diversos sinais fisiológicos e dados clínicos no contexto da previsão de episódios agudos de hipotensão. As potencialidades do paradigma de AC foram avaliadas através da análise de uma abordagem proposta recentemente para o mesmo caso de estudo. Nesta segunda fase, diversas estratégias de otimização compatíveis com configurações em camadas foram desenvolvidas, incluindo um modelo para reduzir falsos alarmes. Os resultados relativos à relevância da informação podem contribuir para uma mudança de paradigma em termos da informação usada para treinar estes modelos. A maior parte da informação poderá estar a ser erroneamente considerada como importante, uma vez que apenas três variáveis, deduzidas dos valores de pressão arterial, foram identificadas como realmente impactantes. Por outro lado, as diferentes estratégias baseadas em AC confirmaram a versatilidade oferecida por este paradigma. Apesar de não terem promovido melhorias significativas neste contexto, estes métodos podem ser adaptados a outros domínios

    Time-Series Embedded Feature Selection Using Deep Learning: Data Mining Electronic Health Records for Novel Biomarkers

    Get PDF
    As health information technologies continue to advance, routine collection and digitisation of patient health records in the form of electronic health records present as an ideal opportunity for data-mining and exploratory analysis of biomarkers and risk factors indicative of a potentially diverse domain of patient outcomes. Patient records have continually become more widely available through various initiatives enabling open access whilst maintaining critical patient privacy. In spite of such progress, health records remain not widely adopted within the current clinical statistical analysis domain due to challenging issues derived from such “big data”.Deep learning based temporal modelling approaches present an ideal solution to health record challenges through automated self-optimisation of representation learning, able to man-ageably compose the high-dimensional domain of patient records into data representations able to model complex data associations. Such representations can serve to condense and reduce dimensionality to emphasise feature sparsity and importance through novel embedded feature selection approaches. Accordingly, application towards patient records enable complex mod-elling and analysis of the full domain of clinical features to select biomarkers of predictive relevance.Firstly, we propose a novel entropy regularised neural network ensemble able to highlight risk factors associated with hospitalisation risk of individuals with dementia. The application of which, was able to reduce a large domain of unique medical events to a small set of relevant risk factors able to maintain hospitalisation discrimination.Following on, we continue our work on ensemble architecture approaches with a novel cas-cading LSTM ensembles to predict severe sepsis onset within critical patients in an ICU critical care centre. We demonstrate state-of-the-art performance capabilities able to outperform that of current related literature.Finally, we propose a novel embedded feature selection application dubbed 1D convolu-tion feature selection using sparsity regularisation. Said methodology was evaluated on both domains of dementia and sepsis prediction objectives to highlight model capability and generalisability. We further report a selection of potential biomarkers for the aforementioned case study objectives highlighting clinical relevance and potential novelty value for future clinical analysis.Accordingly, we demonstrate the effective capability of embedded feature selection ap-proaches through the application of temporal based deep learning architectures in the discovery of effective biomarkers across a variety of challenging clinical applications
    corecore