433 research outputs found

    Non-convex regularization in remote sensing

    Get PDF
    In this paper, we study the effect of different regularizers and their implications in high dimensional image classification and sparse linear unmixing. Although kernelization or sparse methods are globally accepted solutions for processing data in high dimensions, we present here a study on the impact of the form of regularization used and its parametrization. We consider regularization via traditional squared (2) and sparsity-promoting (1) norms, as well as more unconventional nonconvex regularizers (p and Log Sum Penalty). We compare their properties and advantages on several classification and linear unmixing tasks and provide advices on the choice of the best regularizer for the problem at hand. Finally, we also provide a fully functional toolbox for the community.Comment: 11 pages, 11 figure

    Hyperspectral Image Classification Using a Spectral-Spatial Sparse Coding Model

    Get PDF
    We present a sparse coding based spectral-spatial classification model for hyperspectral image (HSI) datasets. The proposed method consists of an efficient sparse coding method in which the l1/lq regularized multi-class logistic regression technique was utilized to achieve a compact representation of hyperspectral image pixels for land cover classification. We applied the proposed algorithm to a HSI dataset collected at the Kennedy Space Center and compared our algorithm to a recently proposed method, Gaussian process maximum likelihood (GP-ML) classifier. Experimental results show that the proposed method can achieve significantly better performances than the GP-ML classifier when training data is limited with a compact pixel representation, leading to more efficient HSI classification systems

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Image fusion for spatial enhancement of hyperspectral image via pixel group based non-local sparse representation

    Get PDF
    Restricted by technical and budget constraints, hyperspectral images (HSIs) are usually obtained with low spatial resolution. In order to improve the spatial resolution of a given hyperspectral image, a new spatial and spectral image fusion approach via pixel group based non-local sparse representation is proposed, which exploits the spectral sparsity and spectral non-local self-similarity of the hyperspectral image. The proposed approach fuses the hyperspectral image with a high-spatial-resolution multispectral image of the same scene to obtain a hyperspectral image with high spatial and spectral resolutions. The input hyperspectral image is used to train the spectral dictionary, while the sparse codes of the desired HSI are estimated by jointly encoding the similar pixels in each pixel group extracted from the high-spatial-resolution multispectral image. To improve the accuracy of the pixel group based non-local sparse representation, the similar pixels in a pixel group are selected by utilizing both the spectral and spatial information. The performance of the proposed approach is tested on two remote sensing image datasets. Experimental results suggest that the proposed method outperforms a number of sparse representation based fusion techniques, and can preserve the spectral information while recovering the spatial details under large magnification factors
    • …
    corecore