2,906 research outputs found

    Further results on dissimilarity spaces for hyperspectral images RF-CBIR

    Full text link
    Content-Based Image Retrieval (CBIR) systems are powerful search tools in image databases that have been little applied to hyperspectral images. Relevance feedback (RF) is an iterative process that uses machine learning techniques and user's feedback to improve the CBIR systems performance. We pursued to expand previous research in hyperspectral CBIR systems built on dissimilarity functions defined either on spectral and spatial features extracted by spectral unmixing techniques, or on dictionaries extracted by dictionary-based compressors. These dissimilarity functions were not suitable for direct application in common machine learning techniques. We propose to use a RF general approach based on dissimilarity spaces which is more appropriate for the application of machine learning algorithms to the hyperspectral RF-CBIR. We validate the proposed RF method for hyperspectral CBIR systems over a real hyperspectral dataset.Comment: In Pattern Recognition Letters (2013

    Use of waveform lidar and hyperspectral sensors to assess selected spatial and structural patterns associated with recent and repeat disturbance and the abundance of sugar maple (Acer saccharum Marsh.) in a temperate mixed hardwood and conifer forest.

    Get PDF
    Abstract Waveform lidar imagery was acquired on September 26, 1999 over the Bartlett Experimental Forest (BEF) in New Hampshire (USA) using NASA\u27s Laser Vegetation Imaging Sensor (LVIS). This flight occurred 20 months after an ice storm damaged millions of hectares of forestland in northeastern North America. Lidar measurements of the amplitude and intensity of ground energy returns appeared to readily detect areas of moderate to severe ice storm damage associated with the worst damage. Southern through eastern aspects on side slopes were particularly susceptible to higher levels of damage, in large part overlapping tracts of forest that had suffered the highest levels of wind damage from the 1938 hurricane and containing the highest levels of sugar maple basal area and biomass. The levels of sugar maple abundance were determined through analysis of the 1997 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) high resolution spectral imagery and inventory of USFS Northern Research Station field plots. We found a relationship between field measurements of stem volume losses and the LVIS metric of mean canopy height (r2 = 0.66; root mean square errors = 5.7 m3/ha, p \u3c 0.0001) in areas that had been subjected to moderate-to-severe ice storm damage, accurately documenting the short-term outcome of a single disturbance event

    Hierarchical Metric Learning for Optical Remote Sensing Scene Categorization

    Full text link
    We address the problem of scene classification from optical remote sensing (RS) images based on the paradigm of hierarchical metric learning. Ideally, supervised metric learning strategies learn a projection from a set of training data points so as to minimize intra-class variance while maximizing inter-class separability to the class label space. However, standard metric learning techniques do not incorporate the class interaction information in learning the transformation matrix, which is often considered to be a bottleneck while dealing with fine-grained visual categories. As a remedy, we propose to organize the classes in a hierarchical fashion by exploring their visual similarities and subsequently learn separate distance metric transformations for the classes present at the non-leaf nodes of the tree. We employ an iterative max-margin clustering strategy to obtain the hierarchical organization of the classes. Experiment results obtained on the large-scale NWPU-RESISC45 and the popular UC-Merced datasets demonstrate the efficacy of the proposed hierarchical metric learning based RS scene recognition strategy in comparison to the standard approaches.Comment: Undergoing revision in GRS

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Combination of Imaging Infrared Spectroscopy and X-ray Computed Microtomography for the Investigation of Bio-and Physicochemical processes in Structured Soils

    Get PDF
    Soil is a heterogeneous mixture of various organic and inorganic parent materials. Major soil functions are driven by their quality, quantity and spatial arrangement, resulting in soil structure. Physical protection of organic matter (OM) in this soil structure is considered as a vital mechanism for stabilizing organic carbon turnover, an important soil function in times of climate change. Herein, we present a technique for the correlative analysis of 2D imaging visible light near-infrared spectroscopy and 3D X-ray computed microtomography (mCT) to investigate the interplay of biogeochemical properties and soil structure in undisturbed soil samples. Samples from the same substrate but different soil management and depth (no-tilled topsoil, tilled topsoil and subsoil) were compared in order to evaluate this method in a diversely structured soil. Imaging spectroscopy is generally used to qualitatively and quantitatively identify OM with high spatial resolution, whereas 3D X-ray mCT provides high resolution information on pore characteristics. The unique combination of these techniques revealed that, in undisturbed samples, OM can be found mainly at greater distances from macropores and close to biopores. However, alterations were observed because of disturbances by tillage. The correlative application of imaging infrared spectroscopic and X-ray mCT analysis provided new insights into the biochemical processes affected by soil structural changes
    corecore