31 research outputs found

    Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead

    Get PDF
    Panchromatic and multispectral image fusion, termed pan-sharpening, is to merge the spatial and spectral information of the source images into a fused one, which has a higher spatial and spectral resolution and is more reliable for downstream tasks compared with any of the source images. It has been widely applied to image interpretation and pre-processing of various applications. A large number of methods have been proposed to achieve better fusion results by considering the spatial and spectral relationships among panchromatic and multispectral images. In recent years, the fast development of artificial intelligence (AI) and deep learning (DL) has significantly enhanced the development of pan-sharpening techniques. However, this field lacks a comprehensive overview of recent advances boosted by the rise of AI and DL. This paper provides a comprehensive review of a variety of pan-sharpening methods that adopt four different paradigms, i.e., component substitution, multiresolution analysis, degradation model, and deep neural networks. As an important aspect of pan-sharpening, the evaluation of the fused image is also outlined to present various assessment methods in terms of reduced-resolution and full-resolution quality measurement. Then, we conclude this paper by discussing the existing limitations, difficulties, and challenges of pan-sharpening techniques, datasets, and quality assessment. In addition, the survey summarizes the development trends in these areas, which provide useful methodological practices for researchers and professionals. Finally, the developments in pan-sharpening are summarized in the conclusion part. The aim of the survey is to serve as a referential starting point for newcomers and a common point of agreement around the research directions to be followed in this exciting area

    Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead

    Get PDF
    Panchromatic and multispectral image fusion, termed pan-sharpening, is to merge the spatial and spectral information of the source images into a fused one, which has a higher spatial and spectral resolution and is more reliable for downstream tasks compared with any of the source images. It has been widely applied to image interpretation and pre-processing of various applications. A large number of methods have been proposed to achieve better fusion results by considering the spatial and spectral relationships among panchromatic and multispectral images. In recent years, the fast development of artificial intelligence (AI) and deep learning (DL) has significantly enhanced the development of pan-sharpening techniques. However, this field lacks a comprehensive overview of recent advances boosted by the rise of AI and DL. This paper provides a comprehensive review of a variety of pan-sharpening methods that adopt four different paradigms, i.e., component substitution, multiresolution analysis, degradation model, and deep neural networks. As an important aspect of pan-sharpening, the evaluation of the fused image is also outlined to present various assessment methods in terms of reduced-resolution and full-resolution quality measurement. Then, we conclude this paper by discussing the existing limitations, difficulties, and challenges of pan-sharpening techniques, datasets, and quality assessment. In addition, the survey summarizes the development trends in these areas, which provide useful methodological practices for researchers and professionals. Finally, the developments in pan-sharpening are summarized in the conclusion part. The aim of the survey is to serve as a referential starting point for newcomers and a common point of agreement around the research directions to be followed in this exciting area

    Anisotropic Harmonic Analysis and Integration of Remotely Sensed Data

    Get PDF
    This thesis develops the theory of discrete directional Gabor frames and several algorithms for the analysis of remotely sensed image data, based on constructions of harmonic analysis. The problems of image registration, image superresolution, and image fusion are separate but interconnected; a general approach using transform methods is the focus of this thesis. The methods of geometric multiresolution analysis are explored, particularly those related to the shearlet transform. Using shearlets, a novel method of image registration is developed that aligns images based on their shearlet features. Additionally, the anisotropic nature of the shearlet transform is deployed to smoothly superrsolve remotely-sensed image with edge features. Wavelet packets, a generalization of wavelets, are utilized for a flexible image fusion algorithm. The interplay between theoretical guarantees for these mathematical constructions, and their effectiveness for image processing is explored throughout

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In dieser Arbeit werden spektral codierte multispektrale Lichtfelder, wie sie von einer Lichtfeldkamera mit einem spektral codierten Mikrolinsenarray aufgenommen werden, untersucht. FĂŒr die Rekonstruktion der codierten Lichtfelder werden zwei Methoden entwickelt und im Detail ausgewertet. ZunĂ€chst wird eine vollstĂ€ndige Rekonstruktion des spektralen Lichtfelds entwickelt, die auf den Prinzipien des Compressed Sensing basiert. Um die spektralen Lichtfelder spĂ€rlich darzustellen, werden 5D-DCT-Basen sowie ein Ansatz zum Lernen eines Dictionary untersucht. Der konventionelle vektorisierte Dictionary-Lernansatz wird auf eine tensorielle Notation verallgemeinert, um das Lichtfeld-Dictionary tensoriell zu faktorisieren. Aufgrund der reduzierten Anzahl von zu lernenden Parametern ermöglicht dieser Ansatz grĂ¶ĂŸere effektive AtomgrĂ¶ĂŸen. Zweitens wird eine auf Deep Learning basierende Rekonstruktion der spektralen Zentralansicht und der zugehörigen DisparitĂ€tskarte aus dem codierten Lichtfeld entwickelt. Dabei wird die gewĂŒnschte Information direkt aus den codierten Messungen geschĂ€tzt. Es werden verschiedene Strategien des entsprechenden Multi-Task-Trainings verglichen. Um die QualitĂ€t der Rekonstruktion weiter zu verbessern, wird eine neuartige Methode zur Einbeziehung von Hilfslossfunktionen auf der Grundlage ihrer jeweiligen normalisierten GradientenĂ€hnlichkeit entwickelt und gezeigt, dass sie bisherige adaptive Methoden ĂŒbertrifft. Um die verschiedenen RekonstruktionsansĂ€tze zu trainieren und zu bewerten, werden zwei DatensĂ€tze erstellt. ZunĂ€chst wird ein großer synthetischer spektraler Lichtfelddatensatz mit verfĂŒgbarer DisparitĂ€t Ground Truth unter Verwendung eines Raytracers erstellt. Dieser Datensatz, der etwa 100k spektrale Lichtfelder mit dazugehöriger DisparitĂ€t enthĂ€lt, wird in einen Trainings-, Validierungs- und Testdatensatz aufgeteilt. Um die QualitĂ€t weiter zu bewerten, werden sieben handgefertigte Szenen, so genannte Datensatz-Challenges, erstellt. Schließlich wird ein realer spektraler Lichtfelddatensatz mit einer speziell angefertigten spektralen Lichtfeldreferenzkamera aufgenommen. Die radiometrische und geometrische Kalibrierung der Kamera wird im Detail besprochen. Anhand der neuen DatensĂ€tze werden die vorgeschlagenen RekonstruktionsansĂ€tze im Detail bewertet. Es werden verschiedene Codierungsmasken untersucht -- zufĂ€llige, regulĂ€re, sowie Ende-zu-Ende optimierte Codierungsmasken, die mit einer neuartigen differenzierbaren fraktalen Generierung erzeugt werden. DarĂŒber hinaus werden weitere Untersuchungen durchgefĂŒhrt, zum Beispiel bezĂŒglich der AbhĂ€ngigkeit von Rauschen, der Winkelauflösung oder Tiefe. Insgesamt sind die Ergebnisse ĂŒberzeugend und zeigen eine hohe RekonstruktionsqualitĂ€t. Die Deep-Learning-basierte Rekonstruktion, insbesondere wenn sie mit adaptiven Multitasking- und Hilfslossstrategien trainiert wird, ĂŒbertrifft die Compressed-Sensing-basierte Rekonstruktion mit anschließender DisparitĂ€tsschĂ€tzung nach dem Stand der Technik

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In dieser Arbeit werden spektral kodierte multispektrale Lichtfelder untersucht, wie sie von einer Lichtfeldkamera mit einem spektral kodierten Mikrolinsenarray aufgenommen werden. FĂŒr die Rekonstruktion der kodierten Lichtfelder werden zwei Methoden entwickelt, eine basierend auf den Prinzipien des Compressed Sensing sowie eine Deep Learning Methode. Anhand neuartiger synthetischer und realer DatensĂ€tze werden die vorgeschlagenen RekonstruktionsansĂ€tze im Detail evaluiert

    Reconstruction from Spatio-Spectrally Coded Multispectral Light Fields

    Get PDF
    In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail

    Multisensory Imagery Cues for Object Separation, Specularity Detection and Deep Learning based Inpainting

    Full text link
    Multisensory imagery cues have been actively investigated in diverse applications in the computer vision community to provide additional geometric information that is either absent or difficult to capture from mainstream two-dimensional imaging. The inherent features of multispectral polarimetric light field imagery (MSPLFI) include object distribution over spectra, surface properties, shape, shading and pixel flow in light space. The aim of this dissertation is to explore these inherent properties to exploit new structures and methodologies for the tasks of object separation, specularity detection and deep learning-based inpainting in MSPLFI. In the first part of this research, an application to separate foreground objects from the background in both outdoor and indoor scenes using multispectral polarimetric imagery (MSPI) cues is examined. Based on the pixel neighbourhood relationship, an on-demand clustering technique is proposed and implemented to separate artificial objects from natural background in a complex outdoor scene. However, due to indoor scenes only containing artificial objects, with vast variations in energy levels among spectra, a multiband fusion technique followed by a background segmentation algorithm is proposed to separate the foreground from the background. In this regard, first, each spectrum is decomposed into low and high frequencies using the fast Fourier transform (FFT) method. Second, principal component analysis (PCA) is applied on both frequency images of the individual spectrum and then combined with the first principal components as a fused image. Finally, a polarimetric background segmentation (BS) algorithm based on the Stokes vector is proposed and implemented on the fused image. The performance of the proposed approaches are evaluated and compared using publicly available MSPI datasets and the dice similarity coefficient (DSC). The proposed multiband fusion and BS methods demonstrate better fusion quality and higher segmentation accuracy compared with other studies for several metrics, including mean absolute percentage error (MAPE), peak signal-to-noise ratio (PSNR), Pearson correlation coefficient (PCOR) mutual information (MI), accuracy, Geometric Mean (G-mean), precision, recall and F1-score. In the second part of this work, a twofold framework for specular reflection detection (SRD) and specular reflection inpainting (SRI) in transparent objects is proposed. The SRD algorithm is based on the mean, the covariance and the Mahalanobis distance for predicting anomalous pixels in MSPLFI. The SRI algorithm first selects four-connected neighbouring pixels from sub-aperture images and then replaces the SRD pixel with the closest matched pixel. For both algorithms, a 6D MSPLFI transparent object dataset is captured from multisensory imagery cues due to the unavailability of this kind of dataset. The experimental results demonstrate that the proposed algorithms predict higher SRD accuracy and better SRI quality than the existing approaches reported in this part in terms of F1-score, G-mean, accuracy, the structural similarity index (SSIM), the PSNR, the mean squared error (IMMSE) and the mean absolute deviation (MAD). However, due to synthesising SRD pixels based on the pixel neighbourhood relationship, the proposed inpainting method in this research produces artefacts and errors when inpainting large specularity areas with irregular holes. Therefore, in the last part of this research, the emphasis is on inpainting large specularity areas with irregular holes based on the deep feature extraction from multisensory imagery cues. The proposed six-stage deep learning inpainting (DLI) framework is based on the generative adversarial network (GAN) architecture and consists of a generator network and a discriminator network. First, pixels’ global flow in the sub-aperture images is calculated by applying the large displacement optical flow (LDOF) method. The proposed training algorithm combines global flow with local flow and coarse inpainting results predicted from the baseline method. The generator attempts to generate best-matched features, while the discriminator seeks to predict the maximum difference between the predicted results and the actual results. The experimental results demonstrate that in terms of the PSNR, MSSIM, IMMSE and MAD, the proposed DLI framework predicts superior inpainting quality to the baseline method and the previous part of this research
    corecore