617 research outputs found

    Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks

    Full text link
    Semantic labeling (or pixel-level land-cover classification) in ultra-high resolution imagery (< 10cm) requires statistical models able to learn high level concepts from spatial data, with large appearance variations. Convolutional Neural Networks (CNNs) achieve this goal by learning discriminatively a hierarchy of representations of increasing abstraction. In this paper we present a CNN-based system relying on an downsample-then-upsample architecture. Specifically, it first learns a rough spatial map of high-level representations by means of convolutions and then learns to upsample them back to the original resolution by deconvolutions. By doing so, the CNN learns to densely label every pixel at the original resolution of the image. This results in many advantages, including i) state-of-the-art numerical accuracy, ii) improved geometric accuracy of predictions and iii) high efficiency at inference time. We test the proposed system on the Vaihingen and Potsdam sub-decimeter resolution datasets, involving semantic labeling of aerial images of 9cm and 5cm resolution, respectively. These datasets are composed by many large and fully annotated tiles allowing an unbiased evaluation of models making use of spatial information. We do so by comparing two standard CNN architectures to the proposed one: standard patch classification, prediction of local label patches by employing only convolutions and full patch labeling by employing deconvolutions. All the systems compare favorably or outperform a state-of-the-art baseline relying on superpixels and powerful appearance descriptors. The proposed full patch labeling CNN outperforms these models by a large margin, also showing a very appealing inference time.Comment: Accepted in IEEE Transactions on Geoscience and Remote Sensing, 201

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Low-Shot Learning for the Semantic Segmentation of Remote Sensing Imagery

    Get PDF
    Deep-learning frameworks have made remarkable progress thanks to the creation of large annotated datasets such as ImageNet, which has over one million training images. Although this works well for color (RGB) imagery, labeled datasets for other sensor modalities (e.g., multispectral and hyperspectral) are minuscule in comparison. This is because annotated datasets are expensive and man-power intensive to complete; and since this would be impractical to accomplish for each type of sensor, current state-of-the-art approaches in computer vision are not ideal for remote sensing problems. The shortage of annotated remote sensing imagery beyond the visual spectrum has forced researchers to embrace unsupervised feature extracting frameworks. These features are learned on a per-image basis, so they tend to not generalize well across other datasets. In this dissertation, we propose three new strategies for learning feature extracting frameworks with only a small quantity of annotated image data; including 1) self-taught feature learning, 2) domain adaptation with synthetic imagery, and 3) semi-supervised classification. ``Self-taught\u27\u27 feature learning frameworks are trained with large quantities of unlabeled imagery, and then these networks extract spatial-spectral features from annotated data for supervised classification. Synthetic remote sensing imagery can be used to boot-strap a deep convolutional neural network, and then we can fine-tune the network with real imagery. Semi-supervised classifiers prevent overfitting by jointly optimizing the supervised classification task along side one or more unsupervised learning tasks (i.e., reconstruction). Although obtaining large quantities of annotated image data would be ideal, our work shows that we can make due with less cost-prohibitive methods which are more practical to the end-user

    Development and Applications of Machine Learning Methods for Hyperspectral Data

    Get PDF
    Die hyperspektrale Fernerkundung der Erde stützt sich auf Daten passiver optischer Sensoren, die auf Plattformen wie Satelliten und unbemannten Luftfahrzeugen montiert sind. Hyperspektrale Daten umfassen Informationen zur Identifizierung von Materialien und zur Überwachung von Umweltvariablen wie Bodentextur, Bodenfeuchte, Chlorophyll a und Landbedeckung. Methoden zur Datenanalyse sind erforderlich, um Informationen aus hyperspektralen Daten zu erhalten. Ein leistungsstarkes Werkzeug bei der Analyse von Hyperspektraldaten ist das Maschinelle Lernen, eine Untergruppe von Künstlicher Intelligenz. Maschinelle Lernverfahren können nichtlineare Korrelationen lösen und sind bei steigenden Datenmengen skalierbar. Jeder Datensatz und jedes maschinelle Lernverfahren bringt neue Herausforderungen mit sich, die innovative Lösungen erfordern. Das Ziel dieser Arbeit ist die Entwicklung und Anwendung von maschinellen Lernverfahren auf hyperspektrale Fernerkundungsdaten. Im Rahmen dieser Arbeit werden Studien vorgestellt, die sich mit drei wesentlichen Herausforderungen befassen: (I) Datensätze, welche nur wenige Datenpunkte mit dazugehörigen Ausgabedaten enthalten, (II) das begrenzte Potential von nicht-tiefen maschinellen Lernverfahren auf hyperspektralen Daten und (III) Unterschiede zwischen den Verteilungen der Trainings- und Testdatensätzen. Die Studien zur Herausforderung (I) führen zur Entwicklung und Veröffentlichung eines Frameworks von Selbstorganisierten Karten (SOMs) für unüberwachtes, überwachtes und teilüberwachtes Lernen. Die SOM wird auf einen hyperspektralen Datensatz in der (teil-)überwachten Regression der Bodenfeuchte angewendet und übertrifft ein Standardverfahren des maschinellen Lernens. Das SOM-Framework zeigt eine angemessene Leistung in der (teil-)überwachten Klassifikation der Landbedeckung. Es bietet zusätzliche Visualisierungsmöglichkeiten, um das Verständnis des zugrunde liegenden Datensatzes zu verbessern. In den Studien, die sich mit Herausforderung (II) befassen, werden drei innovative eindimensionale Convolutional Neural Network (CNN) Architekturen entwickelt. Die CNNs werden für eine Bodentexturklassifikation auf einen frei verfügbaren hyperspektralen Datensatz angewendet. Ihre Leistung wird mit zwei bestehenden CNN-Ansätzen und einem Random Forest verglichen. Die beiden wichtigsten Erkenntnisse lassen sich wie folgt zusammenfassen: Erstens zeigen die CNN-Ansätze eine deutlich bessere Leistung als der angewandte nicht-tiefe Random Forest-Ansatz. Zweitens verbessert das Hinzufügen von Informationen über hyperspektrale Bandnummern zur Eingabeschicht eines CNNs die Leistung im Bezug auf die einzelnen Klassen. Die Studien über die Herausforderung (III) basieren auf einem Datensatz, der auf fünf verschiedenen Messgebieten in Peru im Jahr 2019 erfasst wurde. Die Unterschiede zwischen den Messgebieten werden mit qualitativen Methoden und mit unüberwachten maschinellen Lernverfahren, wie zum Beispiel Principal Component Analysis und Autoencoder, analysiert. Basierend auf den Ergebnissen wird eine überwachte Regression der Bodenfeuchte bei verschiedenen Kombinationen von Messgebieten durchgeführt. Zusätzlich wird der Datensatz mit Monte-Carlo-Methoden ergänzt, um die Auswirkungen der Verschiebung der Verteilungen des Datensatzes auf die Regression zu untersuchen. Der angewandte SOM-Regressor ist relativ robust gegenüber dem Rauschen des Bodenfeuchtesensors und zeigt eine gute Leistung bei kleinen Datensätzen, während der angewandte Random Forest auf dem gesamten Datensatz am besten funktioniert. Die Verschiebung der Verteilungen macht diese Regressionsaufgabe schwierig; einige Kombinationen von Messgebieten bilden einen deutlich sinnvolleren Trainingsdatensatz als andere. Insgesamt zeigen die vorgestellten Studien, die sich mit den drei größten Herausforderungen befassen, vielversprechende Ergebnisse. Die Arbeit gibt schließlich Hinweise darauf, wie die entwickelten maschinellen Lernverfahren in der zukünftigen Forschung weiter verbessert werden können
    corecore