5,065 research outputs found

    Visualization of spectral images

    Get PDF
    Spectral image sensors provide images with a large number of contiguous spectral channels per pixel. Visualization of these huge data sets is not a straightforward issue. There are three principal ways in which spectral data can be presented; as spectra, as image and in feature space. This paper describes several visualization methods and their suitability in the different steps in the research cycle. Combinations of the three presentation methods and dynamic interaction between them, adds significant to the usability. Examples of some software implementations are given. Also the application of volume visualization methods to display spectral images is shown to be valuabl

    Quantitative volumetric Raman imaging of three dimensional cell cultures

    Get PDF
    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in 3D cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy

    Fuzzy spectral and spatial feature integration for classification of nonferrous materials in hyperspectral data

    Get PDF
    Hyperspectral data allows the construction of more elaborate models to sample the properties of the nonferrous materials than the standard RGB color representation. In this paper, the nonferrous waste materials are studied as they cannot be sorted by classical procedures due to their color, weight and shape similarities. The experimental results presented in this paper reveal that factors such as the various levels of oxidization of the waste materials and the slight differences in their chemical composition preclude the use of the spectral features in a simplistic manner for robust material classification. To address these problems, the proposed FUSSER (fuzzy spectral and spatial classifier) algorithm detailed in this paper merges the spectral and spatial features to obtain a combined feature vector that is able to better sample the properties of the nonferrous materials than the single pixel spectral features when applied to the construction of multivariate Gaussian distributions. This approach allows the implementation of statistical region merging techniques in order to increase the performance of the classification process. To achieve an efficient implementation, the dimensionality of the hyperspectral data is reduced by constructing bio-inspired spectral fuzzy sets that minimize the amount of redundant information contained in adjacent hyperspectral bands. The experimental results indicate that the proposed algorithm increased the overall classification rate from 44% using RGB data up to 98% when the spectral-spatial features are used for nonferrous material classification
    corecore