515 research outputs found

    Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net

    Full text link
    Hyperspectral imaging can help better understand the characteristics of different materials, compared with traditional image systems. However, only high-resolution multispectral (HrMS) and low-resolution hyperspectral (LrHS) images can generally be captured at video rate in practice. In this paper, we propose a model-based deep learning approach for merging an HrMS and LrHS images to generate a high-resolution hyperspectral (HrHS) image. In specific, we construct a novel MS/HS fusion model which takes the observation models of low-resolution images and the low-rankness knowledge along the spectral mode of HrHS image into consideration. Then we design an iterative algorithm to solve the model by exploiting the proximal gradient method. And then, by unfolding the designed algorithm, we construct a deep network, called MS/HS Fusion Net, with learning the proximal operators and model parameters by convolutional neural networks. Experimental results on simulated and real data substantiate the superiority of our method both visually and quantitatively as compared with state-of-the-art methods along this line of research.Comment: 10 pages, 7 figure

    Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing

    Full text link
    Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models

    Multi-scale spatial fusion and regularization induced unsupervised auxiliary task CNN model for deep super-resolution of hyperspectral image.

    Get PDF
    Hyperspectral images (HSI) features rich spectral information in many narrow bands but at a cost of a relatively low spatial resolution. As such, various methods have been developed for enhancing the spatial resolution of the low-resolution HSI (Lr-HSI) by fusing it with high-resolution multispectral images (Hr-MSI). The difference in spectrum range and spatial dimensions between the Lr-HSI and Hr-SI have been fundamental but challenging for multispectral/hyperspectral (MS/HS) fusion. In this paper, a multi-scale spatial fusion and regularization induced auxiliary task (MSAT) based CNN model is proposed for deep super-resolution of HSI, where a Lr-HSI is fused with a Hr-MSI to reconstruct a high-resolution HSI (Hr-HSI) counterpart. The multi-scale fusion is used to efficiently address the discrepancy in spatial resolutions between two inputs. Based on the general assumption that the acquired Hr-MSI and the reconstructed Hr-HSI share similar underlying characteristics, the auxiliary task is proposed to learn a representation for improved generality of the model and reduced overfitting. Experimental results on three public datasets have validated the effectiveness of our approach in comparison with several state-of-the-art methods

    Hyperspectral Image Super-Resolution Using Optimization and DCNN-Based Methods

    Get PDF
    Reconstructing a high-resolution (HR) hyperspectral (HS) image from the observed low-resolution (LR) hyperspectral image or a high-resolution multispectral (RGB) image obtained using the exiting imaging cameras is an important research topic for capturing comprehensive scene information in both spatial and spectral domains. The HR-HS hyperspectral image reconstruction mainly consists of two research strategies: optimization-based and the deep convolutional neural network-based learning methods. The optimization-based approaches estimate HR-HS image via minimizing the reconstruction errors of the available low-resolution hyperspectral and high-resolution multispectral images with different constrained prior knowledge such as representation sparsity, spectral physical properties, spatial smoothness, and so on. Recently, deep convolutional neural network (DCNN) has been applied to resolution enhancement of natural images and is proven to achieve promising performance. This chapter provides a comprehensive description of not only the conventional optimization-based methods but also the recently investigated DCNN-based learning methods for HS image super-resolution, which mainly include spectral reconstruction CNN and spatial and spectral fusion CNN. Experiment results on benchmark datasets have been shown for validating effectiveness of HS image super-resolution in both quantitative values and visual effect
    • …
    corecore