255 research outputs found

    Weighted Low-rank Tensor Recovery for Hyperspectral Image Restoration

    Full text link
    Hyperspectral imaging, providing abundant spatial and spectral information simultaneously, has attracted a lot of interest in recent years. Unfortunately, due to the hardware limitations, the hyperspectral image (HSI) is vulnerable to various degradations, such noises (random noise, HSI denoising), blurs (Gaussian and uniform blur, HSI deblurring), and down-sampled (both spectral and spatial downsample, HSI super-resolution). Previous HSI restoration methods are designed for one specific task only. Besides, most of them start from the 1-D vector or 2-D matrix models and cannot fully exploit the structurally spectral-spatial correlation in 3-D HSI. To overcome these limitations, in this work, we propose a unified low-rank tensor recovery model for comprehensive HSI restoration tasks, in which non-local similarity between spectral-spatial cubic and spectral correlation are simultaneously captured by 3-order tensors. Further, to improve the capability and flexibility, we formulate it as a weighted low-rank tensor recovery (WLRTR) model by treating the singular values differently, and study its analytical solution. We also consider the exclusive stripe noise in HSI as the gross error by extending WLRTR to robust principal component analysis (WLRTR-RPCA). Extensive experiments demonstrate the proposed WLRTR models consistently outperform state-of-the-arts in typical low level vision HSI tasks, including denoising, destriping, deblurring and super-resolution.Comment: 22 pages, 22 figure

    Hyperspectral Image Restoration via Total Variation Regularized Low-rank Tensor Decomposition

    Full text link
    Hyperspectral images (HSIs) are often corrupted by a mixture of several types of noise during the acquisition process, e.g., Gaussian noise, impulse noise, dead lines, stripes, and many others. Such complex noise could degrade the quality of the acquired HSIs, limiting the precision of the subsequent processing. In this paper, we present a novel tensor-based HSI restoration approach by fully identifying the intrinsic structures of the clean HSI part and the mixed noise part respectively. Specifically, for the clean HSI part, we use tensor Tucker decomposition to describe the global correlation among all bands, and an anisotropic spatial-spectral total variation (SSTV) regularization to characterize the piecewise smooth structure in both spatial and spectral domains. For the mixed noise part, we adopt the â„“1\ell_1 norm regularization to detect the sparse noise, including stripes, impulse noise, and dead pixels. Despite that TV regulariztion has the ability of removing Gaussian noise, the Frobenius norm term is further used to model heavy Gaussian noise for some real-world scenarios. Then, we develop an efficient algorithm for solving the resulting optimization problem by using the augmented Lagrange multiplier (ALM) method. Finally, extensive experiments on simulated and real-world noise HSIs are carried out to demonstrate the superiority of the proposed method over the existing state-of-the-art ones.Comment: 15 pages, 20 figure

    Constrained low-tubal-rank tensor recovery for hyperspectral images mixed noise removal by bilateral random projections

    Full text link
    In this paper, we propose a novel low-tubal-rank tensor recovery model, which directly constrains the tubal rank prior for effectively removing the mixed Gaussian and sparse noise in hyperspectral images. The constraints of tubal-rank and sparsity can govern the solution of the denoised tensor in the recovery procedure. To solve the constrained low-tubal-rank model, we develop an iterative algorithm based on bilateral random projections to efficiently solve the proposed model. The advantage of random projections is that the approximation of the low-tubal-rank tensor can be obtained quite accurately in an inexpensive manner. Experimental examples for hyperspectral image denoising are presented to demonstrate the effectiveness and efficiency of the proposed method.Comment: Accepted by IGARSS 201

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≥1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods

    Tensor completion using enhanced multiple modes low-rank prior and total variation

    Full text link
    In this paper, we propose a novel model to recover a low-rank tensor by simultaneously performing double nuclear norm regularized low-rank matrix factorizations to the all-mode matricizations of the underlying tensor. An block successive upper-bound minimization algorithm is applied to solve the model. Subsequence convergence of our algorithm can be established, and our algorithm converges to the coordinate-wise minimizers in some mild conditions. Several experiments on three types of public data sets show that our algorithm can recover a variety of low-rank tensors from significantly fewer samples than the other testing tensor completion methods

    Deep Hyperspectral Prior: Denoising, Inpainting, Super-Resolution

    Full text link
    Deep learning algorithms have demonstrated state-of-the-art performance in various tasks of image restoration. This was made possible through the ability of CNNs to learn from large exemplar sets. However, the latter becomes an issue for hyperspectral image processing where datasets commonly consist of just a few images. In this work, we propose a new approach to denoising, inpainting, and super-resolution of hyperspectral image data using intrinsic properties of a CNN without any training. The performance of the given algorithm is shown to be comparable to the performance of trained networks, while its application is not restricted by the availability of training data. This work is an extension of original "deep prior" algorithm to HSI domain and 3D-convolutional networks.Comment: Published in ICCV 2019 Workshop

    Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm

    Full text link
    In this paper, we investigate tensor recovery problems within the tensor singular value decomposition (t-SVD) framework. We propose the partial sum of the tubal nuclear norm (PSTNN) of a tensor. The PSTNN is a surrogate of the tensor tubal multi-rank. We build two PSTNN-based minimization models for two typical tensor recovery problems, i.e., the tensor completion and the tensor principal component analysis. We give two algorithms based on the alternating direction method of multipliers (ADMM) to solve proposed PSTNN-based tensor recovery models. Experimental results on the synthetic data and real-world data reveal the superior of the proposed PSTNN

    Nonlocal Low-Rank Tensor Factor Analysis for Image Restoration

    Full text link
    Low-rank signal modeling has been widely leveraged to capture non-local correlation in image processing applications. We propose a new method that employs low-rank tensor factor analysis for tensors generated by grouped image patches. The low-rank tensors are fed into the alternative direction multiplier method (ADMM) to further improve image reconstruction. The motivating application is compressive sensing (CS), and a deep convolutional architecture is adopted to approximate the expensive matrix inversion in CS applications. An iterative algorithm based on this low-rank tensor factorization strategy, called NLR-TFA, is presented in detail. Experimental results on noiseless and noisy CS measurements demonstrate the superiority of the proposed approach, especially at low CS sampling rates

    Hyperspectral Image Denoising with Partially Orthogonal Matrix Vector Tensor Factorization

    Full text link
    Hyperspectral image (HSI) has some advantages over natural image for various applications due to the extra spectral information. During the acquisition, it is often contaminated by severe noises including Gaussian noise, impulse noise, deadlines, and stripes. The image quality degeneration would badly effect some applications. In this paper, we present a HSI restoration method named smooth and robust low rank tensor recovery. Specifically, we propose a structural tensor decomposition in accordance with the linear spectral mixture model of HSI. It decomposes a tensor into sums of outer matrix vector products, where the vectors are orthogonal due to the independence of endmember spectrums. Based on it, the global low rank tensor structure can be well exposited for HSI denoising. In addition, the 3D anisotropic total variation is used for spatial spectral piecewise smoothness of HSI. Meanwhile, the sparse noise including impulse noise, deadlines and stripes, is detected by the l1 norm regularization. The Frobenius norm is used for the heavy Gaussian noise in some real world scenarios. The alternating direction method of multipliers is adopted to solve the proposed optimization model, which simultaneously exploits the global low rank property and the spatial spectral smoothness of the HSI. Numerical experiments on both simulated and real data illustrate the superiority of the proposed method in comparison with the existing ones

    Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery

    Full text link
    Recently, single gray/RGB image super-resolution reconstruction task has been extensively studied and made significant progress by leveraging the advanced machine learning techniques based on deep convolutional neural networks (DCNNs). However, there has been limited technical development focusing on single hyperspectral image super-resolution due to the high-dimensional and complex spectral patterns in hyperspectral image. In this paper, we make a step forward by investigating how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches for computationally efficient single hyperspectral image super-resolution, referred as SSPSR. Specifically, we introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data. Considering that the hyperspectral training samples are scarce and the spectral dimension of hyperspectral image data is very high, it is nontrivial to train a stable and effective deep network. Therefore, a group convolution (with shared network parameters) and progressive upsampling framework is proposed. This will not only alleviate the difficulty in feature extraction due to high-dimension of the hyperspectral data, but also make the training process more stable. To exploit the spatial and spectral prior, we design a spatial-spectral block (SSB), which consists of a spatial residual module and a spectral attention residual module. Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images, and outperforms state-of-the-arts. The source code is available at \url{https://github.com/junjun-jiang/SSPSRComment: Accepted for publication at IEEE Transactions on Computational Imagin
    • …
    corecore