322 research outputs found

    Learning a Dilated Residual Network for SAR Image Despeckling

    Full text link
    In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear end-to-end mapping between the noisy and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure. In addition, skip connections and residual learning strategy are added to the despeckling model to maintain the image details and reduce the vanishing gradient problem. Compared with the traditional despeckling methods, the proposed method shows superior performance over the state-of-the-art methods on both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table

    Improved Quasi-Recurrent Neural Network for Hyperspectral Image Denoising

    Full text link
    Hyperspectral image is unique and useful for its abundant spectral bands, but it subsequently requires extra elaborated treatments of the spatial-spectral correlation as well as the global correlation along the spectrum for building a robust and powerful HSI restoration algorithm. By considering such HSI characteristics, 3D Quasi-Recurrent Neural Network (QRNN3D) is one of the HSI denoising networks that has been shown to achieve excellent performance and flexibility. In this paper, we show that with a few simple modifications, the performance of QRNN3D could be substantially improved further. Our modifications are based on the finding that through QRNN3D is powerful for modeling spectral correlation, it neglects the proper treatment between features from different sources and its training strategy is suboptimal. We, therefore, introduce an adaptive fusion module to replace its vanilla additive skip connection to better fuse the features of the encoder and decoder. We additionally identify several important techniques to further enhance the performance, which includes removing batch normalization, use of extra frequency loss, and learning rate warm-up. Experimental results on various noise settings demonstrate the effectiveness and superior performance of our method.Comment: technical repor

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS
    corecore