185 research outputs found

    Dynamical Hyperspectral Unmixing with Variational Recurrent Neural Networks

    Full text link
    Multitemporal hyperspectral unmixing (MTHU) is a fundamental tool in the analysis of hyperspectral image sequences. It reveals the dynamical evolution of the materials (endmembers) and of their proportions (abundances) in a given scene. However, adequately accounting for the spatial and temporal variability of the endmembers in MTHU is challenging, and has not been fully addressed so far in unsupervised frameworks. In this work, we propose an unsupervised MTHU algorithm based on variational recurrent neural networks. First, a stochastic model is proposed to represent both the dynamical evolution of the endmembers and their abundances, as well as the mixing process. Moreover, a new model based on a low-dimensional parametrization is used to represent spatial and temporal endmember variability, significantly reducing the amount of variables to be estimated. We propose to formulate MTHU as a Bayesian inference problem. However, the solution to this problem does not have an analytical solution due to the nonlinearity and non-Gaussianity of the model. Thus, we propose a solution based on deep variational inference, in which the posterior distribution of the estimated abundances and endmembers is represented by using a combination of recurrent neural networks and a physically motivated model. The parameters of the model are learned using stochastic backpropagation. Experimental results show that the proposed method outperforms state of the art MTHU algorithms

    Development and Applications of Machine Learning Methods for Hyperspectral Data

    Get PDF
    Die hyperspektrale Fernerkundung der Erde stützt sich auf Daten passiver optischer Sensoren, die auf Plattformen wie Satelliten und unbemannten Luftfahrzeugen montiert sind. Hyperspektrale Daten umfassen Informationen zur Identifizierung von Materialien und zur Überwachung von Umweltvariablen wie Bodentextur, Bodenfeuchte, Chlorophyll a und Landbedeckung. Methoden zur Datenanalyse sind erforderlich, um Informationen aus hyperspektralen Daten zu erhalten. Ein leistungsstarkes Werkzeug bei der Analyse von Hyperspektraldaten ist das Maschinelle Lernen, eine Untergruppe von Künstlicher Intelligenz. Maschinelle Lernverfahren können nichtlineare Korrelationen lösen und sind bei steigenden Datenmengen skalierbar. Jeder Datensatz und jedes maschinelle Lernverfahren bringt neue Herausforderungen mit sich, die innovative Lösungen erfordern. Das Ziel dieser Arbeit ist die Entwicklung und Anwendung von maschinellen Lernverfahren auf hyperspektrale Fernerkundungsdaten. Im Rahmen dieser Arbeit werden Studien vorgestellt, die sich mit drei wesentlichen Herausforderungen befassen: (I) Datensätze, welche nur wenige Datenpunkte mit dazugehörigen Ausgabedaten enthalten, (II) das begrenzte Potential von nicht-tiefen maschinellen Lernverfahren auf hyperspektralen Daten und (III) Unterschiede zwischen den Verteilungen der Trainings- und Testdatensätzen. Die Studien zur Herausforderung (I) führen zur Entwicklung und Veröffentlichung eines Frameworks von Selbstorganisierten Karten (SOMs) für unüberwachtes, überwachtes und teilüberwachtes Lernen. Die SOM wird auf einen hyperspektralen Datensatz in der (teil-)überwachten Regression der Bodenfeuchte angewendet und übertrifft ein Standardverfahren des maschinellen Lernens. Das SOM-Framework zeigt eine angemessene Leistung in der (teil-)überwachten Klassifikation der Landbedeckung. Es bietet zusätzliche Visualisierungsmöglichkeiten, um das Verständnis des zugrunde liegenden Datensatzes zu verbessern. In den Studien, die sich mit Herausforderung (II) befassen, werden drei innovative eindimensionale Convolutional Neural Network (CNN) Architekturen entwickelt. Die CNNs werden für eine Bodentexturklassifikation auf einen frei verfügbaren hyperspektralen Datensatz angewendet. Ihre Leistung wird mit zwei bestehenden CNN-Ansätzen und einem Random Forest verglichen. Die beiden wichtigsten Erkenntnisse lassen sich wie folgt zusammenfassen: Erstens zeigen die CNN-Ansätze eine deutlich bessere Leistung als der angewandte nicht-tiefe Random Forest-Ansatz. Zweitens verbessert das Hinzufügen von Informationen über hyperspektrale Bandnummern zur Eingabeschicht eines CNNs die Leistung im Bezug auf die einzelnen Klassen. Die Studien über die Herausforderung (III) basieren auf einem Datensatz, der auf fünf verschiedenen Messgebieten in Peru im Jahr 2019 erfasst wurde. Die Unterschiede zwischen den Messgebieten werden mit qualitativen Methoden und mit unüberwachten maschinellen Lernverfahren, wie zum Beispiel Principal Component Analysis und Autoencoder, analysiert. Basierend auf den Ergebnissen wird eine überwachte Regression der Bodenfeuchte bei verschiedenen Kombinationen von Messgebieten durchgeführt. Zusätzlich wird der Datensatz mit Monte-Carlo-Methoden ergänzt, um die Auswirkungen der Verschiebung der Verteilungen des Datensatzes auf die Regression zu untersuchen. Der angewandte SOM-Regressor ist relativ robust gegenüber dem Rauschen des Bodenfeuchtesensors und zeigt eine gute Leistung bei kleinen Datensätzen, während der angewandte Random Forest auf dem gesamten Datensatz am besten funktioniert. Die Verschiebung der Verteilungen macht diese Regressionsaufgabe schwierig; einige Kombinationen von Messgebieten bilden einen deutlich sinnvolleren Trainingsdatensatz als andere. Insgesamt zeigen die vorgestellten Studien, die sich mit den drei größten Herausforderungen befassen, vielversprechende Ergebnisse. Die Arbeit gibt schließlich Hinweise darauf, wie die entwickelten maschinellen Lernverfahren in der zukünftigen Forschung weiter verbessert werden können

    DC-SAM: DILATED CONVOLUTION AND SPECTRAL ATTENTION MODULE FOR WHEAT SALT STRESS CLASSIFICATION AND INTERPRETATION

    Get PDF
    Salt stress can impact wheat production significantly and is difficult to be managed when the condition is critical. Hence, detecting such stress whet it is at an early stage is important. This paper proposed a deep learning method called Dilated Convolution and Spectral Attention Module (DC-SAM), which exploits the difference in spectral responses of healthy and stressed wheat. The proposed DC-SAM method consists of two key modules: (i) a dilated convolution module to capture spectral features with large receptive field; (ii) a spectral attention module to adaptively fuse the spectral features based on their interrelationship. As the dilated convolution module has long receptive fields, it can capture short- and long dependency patterns that exist in hyperspectral data. Our experimental results with four datasets show that DC-SAM outperforms existing state-of-the-art methods. Also, the output of the proposed attention module reveals the most discriminative spectral bands for a given wheat stress classification task
    corecore