1,628 research outputs found

    Contributions to Ensemble Classifiers with Image Analysis Applications

    Get PDF
    134 p.Ésta tesis tiene dos aspectos fundamentales, por un lado, la propuesta denuevas arquitecturas de clasificadores y, por otro, su aplicación a el análisis deimagen.Desde el punto de vista de proponer nuevas arquitecturas de clasificaciónla tesis tiene dos contribucciones principales. En primer lugar la propuestade un innovador ensemble de clasificadores basado en arquitecturas aleatorias,como pueden ser las Extreme Learning Machines (ELM), Random Forest (RF) yRotation Forest, llamado Hybrid Extreme Rotation Forest (HERF) y su mejoraAnticipative HERF (AHERF) que conlleva una selección del modelo basada enel rendimiento de predicción para cada conjunto de datos específico. Ademásde lo anterior, proveemos una prueba formal tanto del AHERF, como de laconvergencia de los ensembles de regresores ELMs que mejoran la usabilidad yreproducibilidad de los resultados.En la vertiente de aplicación hemos estado trabajando con dos tipos de imágenes:imágenes hiperespectrales de remote sensing, e imágenes médicas tanto depatologías específicas de venas de sangre como de imágenes para el diagnósticode Alzheimer. En todos los casos los ensembles de clasificadores han sido la herramientacomún además de estrategias especificas de aprendizaje activo basadasen dichos ensembles de clasificadores. En el caso concreto de la segmentaciónde vasos sanguíneos nos hemos enfrentado con problemas, uno relacionado conlos trombos del Aneurismas de Aorta Abdominal en imágenes 3D de tomografíacomputerizada y el otro la segmentación de venas sangineas en la retina. Losresultados en ambos casos en términos de rendimiento en clasificación y ahorrode tiempo en la segmentación humana nos permiten recomendar esos enfoquespara la práctica clínica.Chapter 1Background y contribuccionesDado el espacio limitado para realizar el resumen de la tesis hemos decididoincluir un resumen general con los puntos más importantes, una pequeña introducciónque pudiera servir como background para entender los conceptos básicosde cada uno de los temas que hemos tocado y un listado con las contribuccionesmás importantes.1.1 Ensembles de clasificadoresLa idea de los ensembles de clasificadores fue propuesta por Hansen y Salamon[4] en el contexto del aprendizaje de las redes neuronales artificiales. Sutrabajo mostró que un ensemble de redes neuronales con un esquema de consensogrupal podía mejorar el resultado obtenido con una única red neuronal.Los ensembles de clasificadores buscan obtener unos resultados de clasificaciónmejores combinando clasificadores débiles y diversos [8, 9]. La propuesta inicialde ensemble contenía una colección homogena de clasificadores individuales. ElRandom Forest es un claro ejemplo de ello, puesto que combina la salida de unacolección de árboles de decisión realizando una votación por mayoría [2, 3], yse construye utilizando una técnica de remuestreo sobre el conjunto de datos ycon selección aleatoria de variables.2CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 31.2 Aprendizaje activoLa construcción de un clasificador supervisado consiste en el aprendizaje de unaasignación de funciones de datos en un conjunto de clases dado un conjunto deentrenamiento etiquetado. En muchas situaciones de la vida real la obtenciónde las etiquetas del conjunto de entrenamiento es costosa, lenta y propensa aerrores. Esto hace que la construcción del conjunto de entrenamiento sea unatarea engorrosa y requiera un análisis manual exaustivo de la imagen. Esto se realizanormalmente mediante una inspección visual de las imágenes y realizandoun etiquetado píxel a píxel. En consecuencia el conjunto de entrenamiento esaltamente redundante y hace que la fase de entrenamiento del modelo sea muylenta. Además los píxeles ruidosos pueden interferir en las estadísticas de cadaclase lo que puede dar lugar a errores de clasificación y/o overfitting. Por tantoes deseable que un conjunto de entrenamiento sea construido de una manera inteligente,lo que significa que debe representar correctamente los límites de clasemediante el muestreo de píxeles discriminantes. La generalización es la habilidadde etiquetar correctamente datos que no se han visto previamente y quepor tanto son nuevos para el modelo. El aprendizaje activo intenta aprovecharla interacción con un usuario para proporcionar las etiquetas de las muestrasdel conjunto de entrenamiento con el objetivo de obtener la clasificación másprecisa utilizando el conjunto de entrenamiento más pequeño posible.1.3 AlzheimerLa enfermedad de Alzheimer es una de las causas más importantes de discapacidaden personas mayores. Dado el envejecimiento poblacional que es una realidaden muchos países, con el aumento de la esperanza de vida y con el aumentodel número de personas mayores, el número de pacientes con demencia aumentarátambién. Debido a la importancia socioeconómica de la enfermedad enlos países occidentales existe un fuerte esfuerzo internacional focalizado en laenfermedad del Alzheimer. En las etapas tempranas de la enfermedad la atrofiacerebral suele ser sutil y está espacialmente distribuida por diferentes regionescerebrales que incluyen la corteza entorrinal, el hipocampo, las estructuras temporaleslateral e inferior, así como el cíngulo anterior y posterior. Son muchoslos esfuerzos de diseño de algoritmos computacionales tratando de encontrarbiomarcadores de imagen que puedan ser utilizados para el diagnóstico no invasivodel Alzheimer y otras enfermedades neurodegenerativas.CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 41.4 Segmentación de vasos sanguíneosLa segmentación de los vasos sanguíneos [1, 7, 6] es una de las herramientas computacionalesesenciales para la evaluación clínica de las enfermedades vasculares.Consiste en particionar un angiograma en dos regiones que no se superponen:la región vasculares y el fondo. Basándonos en los resultados de dicha particiónse pueden extraer, modelar, manipular, medir y visualizar las superficies vasculares.Éstas estructuras son muy útiles y juegan un rol muy imporntate en lostratamientos endovasculares de las enfermedades vasculares. Las enfermedadesvasculares son una de las principales fuentes de morbilidad y mortalidad en todoel mundo.Aneurisma de Aorta Abdominal El Aneurisma de Aorta Abdominal (AAA)es una dilatación local de la Aorta que ocurre entre las arterias renal e ilíaca. Eldebilitamiento de la pared de la aorta conduce a su deformación y la generaciónde un trombo. Generalmente, un AAA se diagnostica cuando el diámetro anterioposteriormínimo de la aorta alcanza los 3 centímetros [5]. La mayoría delos aneurismas aórticos son asintomáticos y sin complicaciones. Los aneurismasque causan los síntomas tienen un mayor riesgo de ruptura. El dolor abdominalo el dolor de espalda son las dos principales características clínicas que sugiereno bien la reciente expansión o fugas. Las complicaciones son a menudo cuestiónde vida o muerte y pueden ocurrir en un corto espacio de tiempo. Por lo tanto,el reto consiste en diagnosticar lo antes posible la aparición de los síntomas.Imágenes de Retina La evaluación de imágenes del fondo del ojo es una herramientade diagnóstico de la patología vascular y no vascular. Dicha inspecciónpuede revelar hipertensión, diabetes, arteriosclerosis, enfermedades cardiovascularese ictus. Los principales retos para la segmentación de vasos retinianos son:(1) la presencia de lesiones que se pueden interpretar de forma errónea comovasos sanguíneos; (2) bajo contraste alrededor de los vasos más delgados, (3)múltiples escalas de tamaño de los vasos.1.5 ContribucionesÉsta tesis tiene dos tipos de contribuciones. Contribuciones computacionales ycontribuciones orientadas a una aplicación o prácticas.CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 5Desde un punto de vista computacional las contribuciones han sido las siguientes:¿ Un nuevo esquema de aprendizaje activo usando Random Forest y el cálculode la incertidumbre que permite una segmentación de imágenes rápida,precisa e interactiva.¿ Hybrid Extreme Rotation Forest.¿ Adaptative Hybrid Extreme Rotation Forest.¿ Métodos de aprendizaje semisupervisados espectrales-espaciales.¿ Unmixing no lineal y reconstrucción utilizando ensembles de regresoresELM.Desde un punto de vista práctico:¿ Imágenes médicas¿ Aprendizaje activo combinado con HERF para la segmentación deimágenes de tomografía computerizada.¿ Mejorar el aprendizaje activo para segmentación de imágenes de tomografíacomputerizada con información de dominio.¿ Aprendizaje activo con el clasificador bootstrapped dendritic aplicadoa segmentación de imágenes médicas.¿ Meta-ensembles de clasificadores para detección de Alzheimer conimágenes de resonancia magnética.¿ Random Forest combinado con aprendizaje activo para segmentaciónde imágenes de retina.¿ Segmentación automática de grasa subcutanea y visceral utilizandoresonancia magnética.¿ Imágenes hiperespectrales¿ Unmixing no lineal y reconstrucción utilizando ensembles de regresoresELM.¿ Métodos de aprendizaje semisupervisados espectrales-espaciales concorrección espacial usando AHERF.¿ Método semisupervisado de clasificación utilizando ensembles de ELMsy con regularización espacial

    Unsupervised spectral sub-feature learning for hyperspectral image classification

    Get PDF
    Spectral pixel classification is one of the principal techniques used in hyperspectral image (HSI) analysis. In this article, we propose an unsupervised feature learning method for classification of hyperspectral images. The proposed method learns a dictionary of sub-feature basis representations from the spectral domain, which allows effective use of the correlated spectral data. The learned dictionary is then used in encoding convolutional samples from the hyperspectral input pixels to an expanded but sparse feature space. Expanded hyperspectral feature representations enable linear separation between object classes present in an image. To evaluate the proposed method, we performed experiments on several commonly used HSI data sets acquired at different locations and by different sensors. Our experimental results show that the proposed method outperforms other pixel-wise classification methods that make use of unsupervised feature extraction approaches. Additionally, even though our approach does not use any prior knowledge, or labelled training data to learn features, it yields either advantageous, or comparable, results in terms of classification accuracy with respect to recent semi-supervised methods

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin
    • …
    corecore