6 research outputs found

    Hyperorthogonal well-folded Hilbert curves

    Get PDF
    R-trees can be used to store and query sets of point data in two or more dimensions. An easy way to construct and maintain R-trees for two-dimensional points, due to Kamel and Faloutsos, is to keep the points in the order in which they appear along the Hilbert curve. The R-tree will then store bounding boxes of points along contiguous sections of the curve, and the efficiency of the R-tree depends on the size of the bounding boxes---smaller is better. Since there are many different ways to generalize the Hilbert curve to higher dimensions, this raises the question which generalization results in the smallest bounding boxes. Familiar methods, such as the one by Butz, can result in curve sections whose bounding boxes are a factor Ω(2d/2)\Omega(2^{d/2}) larger than the volume traversed by that section of the curve. Most of the volume bounded by such bounding boxes would not contain any data points. In this paper we present a new way of generalizing Hilbert's curve to higher dimensions, which results in much tighter bounding boxes: they have at most 4 times the volume of the part of the curve covered, independent of the number of dimensions. Moreover, we prove that a factor 4 is asymptotically optimal.Comment: Manuscript submitted to Journal of Computational Geometry. An abstract appeared in the 31st Int Symp on Computational Geometry (SoCG 2015), LIPIcs 34:812-82

    Sixteen space-filling curves and traversals for d-dimensional cubes and simplices

    Get PDF
    This article describes sixteen different ways to traverse d-dimensional space recursively in a way that is well-defined for any number of dimensions. Each of these traversals has distinct properties that may be beneficial for certain applications. Some of the traversals are novel, some have been known in principle but had not been described adequately for any number of dimensions, some of the traversals have been known. This article is the first to present them all in a consistent notation system. Furthermore, with this article, tools are provided to enumerate points in a regular grid in the order in which they are visited by each traversal. In particular, we cover: five discontinuous traversals based on subdividing cubes into 2^d subcubes: Z-traversal (Morton indexing), U-traversal, Gray-code traversal, Double-Gray-code traversal, and Inside-out traversal; two discontinuous traversals based on subdividing simplices into 2^d subsimplices: the Hill-Z traversal and the Maehara-reflected traversal; five continuous traversals based on subdividing cubes into 2^d subcubes: the Base-camp Hilbert curve, the Harmonious Hilbert curve, the Alfa Hilbert curve, the Beta Hilbert curve, and the Butz-Hilbert curve; four continuous traversals based on subdividing cubes into 3^d subcubes: the Peano curve, the Coil curve, the Half-coil curve, and the Meurthe curve. All of these traversals are self-similar in the sense that the traversal in each of the subcubes or subsimplices of a cube or simplex, on any level of recursive subdivision, can be obtained by scaling, translating, rotating, reflecting and/or reversing the traversal of the complete unit cube or simplex.Comment: 28 pages, 12 figures. v2: fixed a confusing typo on page 12, line

    Computation of Lebesgue’s Space-Filling Curve

    Get PDF
    The means of realizing or approximating the Lebesgue space-filling curve (SFC) with binary arithmetic on a uniformly spaced binary grid are not obvious, one problem being its formulation in terms of ternary representations; that impediment can be overcome via use of a binary-oriented Cantor set.  A second impediment, namely the Devil’s Staircase feature, also created by the role of the Cantor set, can be overcome via the definition of a “working inverse”, thereby providing means of achieving compatibility with such a grid. The results indicate an alternative way to proceed, in realizing an approximation to Lebesgue’s SFC, which circumvents any complication raised by Cantor sets and is compatible with binary and integer arithmetic. Well-known constructions such as the z-curve or Morton order, sometimes considered in association with Lebesgue’s SFC, are treated as irrelevant

    Hyperorthogonal well-folded Hilbert curves HYPERORTHOGONAL WELL-FOLDED HILBERT CURVES

    No full text
    Abstract R-trees can be used to store and query sets of point data in two or more dimensions. An easy way to construct and maintain R-trees for two-dimensional points, due to Kamel and Faloutsos, is to keep the points in the order in which they appear along the Hilbert curve. The R-tree will then store bounding boxes of points along contiguous sections of the curve, and the efficiency of the R-tree depends on the size of the bounding boxes-smaller is better. Since there are many different ways to generalize the Hilbert curve to higher dimensions, this raises the question which generalization results in the smallest bounding boxes. Familiar methods, such as the one by Butz, can result in curve sections whose bounding boxes are a factor Ω(2 d/2 ) larger than the volume traversed by that section of the curve. Most of the volume bounded by such bounding boxes would not contain any data points. In this paper we present a new way of generalizing Hilbert's curve to higher dimensions, which results in much tighter bounding boxes: they have at most 4 times the volume of the part of the curve covered, independent of the number of dimensions. Moreover, we prove that a factor 4 is asymptotically optimal

    Hyperorthogonal well-folded Hilbert curves

    No full text
    R-trees can be used to store and query sets of point data in two or more dimensions. An easy way to construct and maintain R-trees for two-dimensional points, due to Kamel and Faloutsos, is to keep the points in the order in which they appear along the Hilbert curve. The R-tree will then store bounding boxes of points along contiguous sections of the curve, and the efficiency of the R-tree depends on the size of the bounding boxes---smaller is better. Since there are many different ways to generalize the Hilbert curve to higher dimensions, this raises the question which generalization results in the smallest bounding boxes. Familiar methods, such as the one by Butz, can result in curve sections whose bounding boxes are a factor Ω(2 d/2 ) \u3cbr/\u3eΩ(2d/2)\u3cbr/\u3e larger than the volume traversed by that section of the curve. Most of the volume bounded by such bounding boxes would not contain any data points. In this paper we present a new way of generalizing Hilbert's curve to higher dimensions, which results in much tighter bounding boxes: they have at most 4 times the volume of the part of the curve covered, independent of the number of dimensions. Moreover, we prove that a factor 4 is asymptotically optimal
    corecore