11 research outputs found

    Kolmogorov Complexity and Solovay Functions

    Get PDF
    Solovay proved that there exists a computable upper bound f of the prefix-free Kolmogorov complexity function K such that f (x) = K(x) for infinitely many x. In this paper, we consider the class of computable functions f such that K(x) <= f (x)+O(1) for all x and f (x) <= K(x) + O(1) for infinitely many x, which we call Solovay functions. We show that Solovay functions present interesting connections with randomness notions such as Martin-L\"of randomness and K-triviality

    ジッスウ ノ シュウゴウロン ト ランダムネス ガイセツ ショウメイロン ト フクザツセイ

    Get PDF

    Partition genericity and pigeonhole basis theorems

    Full text link
    There exist two notions of typicality in computability theory, namely, genericity and randomness. In this article, we introduce a new notion of genericity, called partition genericity, which is at the intersection of these two notions of typicality, and show that many basis theorems apply to partition genericity. More precisely, we prove that every co-hyperimmune set and every Kurtz random is partition generic, and that every partition generic set admits weak infinite subsets. In particular, we answer a question of Kjos-Hanssen and Liu by showing that every Kurtz random admits an infinite subset which does not compute any set of positive Hausdorff dimension. Partition genericty is a partition regular notion, so these results imply many existing pigeonhole basis theorems.Comment: 23 page

    Computability Theory

    Get PDF
    Computability is one of the fundamental notions of mathematics, trying to capture the effective content of mathematics. Starting from Gödel’s Incompleteness Theorem, it has now blossomed into a rich area with strong connections with other areas of mathematical logic as well as algebra and theoretical computer science

    Randomness and Computability

    No full text
    This thesis establishes significant new results in the area of algorithmic randomness. These results elucidate the deep relationship between randomness and computability. A number of results focus on randomness for finite strings. Levin introduced two functions which measure the randomness of finite strings. One function is derived from a universal monotone machine and the other function is derived from an optimal computably enumerable semimeasure. Gacs proved that infinitely often, the gap between these two functions exceeds the inverse Ackermann function (applied to string length). This thesis improves this result to show that infinitely often the difference between these two functions exceeds the double logarithm. Another separation result is proved for two different kinds of process machine. Information about the randomness of finite strings can be used as a computational resource. This information is contained in the overgraph. Muchnik and Positselsky asked whether there exists an optimal monotone machine whose overgraph is not truth-table complete. This question is answered in the negative. Related results are also established. This thesis makes advances in the theory of randomness for infinite binary sequences. A variant of process machines is used to characterise computable randomness, Schnorr randomness and weak randomness. This result is extended to give characterisations of these types of randomness using truthtable reducibility. The computable Lipschitz reducibility measures both the relative randomness and the relative computational power of real numbers. It is proved that the computable Lipschitz degrees of computably enumerable sets are not dense. Infinite binary sequences can be regarded as elements of Cantor space. Most research in randomness for Cantor space has been conducted using the uniform measure. However, the study of non-computable measures has led to interesting results. This thesis shows that the two approaches that have been used to define randomness on Cantor space for non-computable measures: that of Reimann and Slaman, along with the uniform test approach first introduced by Levin and also used by Gacs, Hoyrup and Rojas, are equivalent. Levin established the existence of probability measures for which all infinite sequences are random. These measures are termed neutral measures. It is shown that every PA degree computes a neutral measure. Work of Miller is used to show that the set of atoms of a neutral measure is a countable Scott set and in fact any countable Scott set is the set of atoms of some neutral measure. Neutral measures are used to prove new results in computability theory. For example, it is shown that the low computable enumerable sets are precisely the computably enumerable sets bounded by PA degrees strictly below the halting problem. This thesis applies ideas developed in the study of randomness to computability theory by examining indifferent sets for comeager classes in Cantor space. A number of results are proved. For example, it is shown that there exist 1-generic sets that can compute their own indifferent sets

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..

    Hyperimmune-free degrees and Schnorr triviality

    No full text
    10.2178/jsl/1230396761Journal of Symbolic Logic733999-100
    corecore