3,756 research outputs found

    Minimum-Weight Edge Discriminator in Hypergraphs

    Full text link
    In this paper we introduce the concept of minimum-weight edge-discriminators in hypergraphs, and study its various properties. For a hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), a function λ:VZ+{0}\lambda: \mathcal V\rightarrow \mathbb Z^{+}\cup\{0\} is said to be an {\it edge-discriminator} on H\mathcal H if vEiλ(v)>0\sum_{v\in E_i}{\lambda(v)}>0, for all hyperedges EiEE_i\in \mathcal E, and vEiλ(v)vEjλ(v)\sum_{v\in E_i}{\lambda(v)}\ne \sum_{v\in E_j}{\lambda(v)}, for every two distinct hyperedges Ei,EjEE_i, E_j \in \mathcal E. An {\it optimal edge-discriminator} on H\mathcal H, to be denoted by λH\lambda_\mathcal H, is an edge-discriminator on H\mathcal H satisfying vVλH(v)=minλvVλ(v)\sum_{v\in \mathcal V}\lambda_\mathcal H (v)=\min_\lambda\sum_{v\in \mathcal V}{\lambda(v)}, where the minimum is taken over all edge-discriminators on H\mathcal H. We prove that any hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), with E=n|\mathcal E|=n, satisfies vVλH(v)n(n+1)/2\sum_{v\in \mathcal V} \lambda_\mathcal H(v)\leq n(n+1)/2, and equality holds if and only if the elements of E\mathcal E are mutually disjoint. For rr-uniform hypergraphs H=(V,E)\mathcal H=(\mathcal V, \mathcal E), it follows from results on Sidon sequences that vVλH(v)Vr+1+o(Vr+1)\sum_{v\in \mathcal V}\lambda_{\mathcal H}(v)\leq |\mathcal V|^{r+1}+o(|\mathcal V|^{r+1}), and the bound is attained up to a constant factor by the complete rr-uniform hypergraph. Next, we construct optimal edge-discriminators for some special hypergraphs, which include paths, cycles, and complete rr-partite hypergraphs. Finally, we show that no optimal edge-discriminator on any hypergraph H=(V,E)\mathcal H=(\mathcal V, \mathcal E), with E=n(3)|\mathcal E|=n (\geq 3), satisfies vVλH(v)=n(n+1)/21\sum_{v\in \mathcal V} \lambda_\mathcal H (v)=n(n+1)/2-1, which, in turn, raises many other interesting combinatorial questions.Comment: 22 pages, 5 figure

    Odd-Cycle-Free Facet Complexes and the K\"onig property

    Full text link
    We use the definition of a simplicial cycle to define an odd-cycle-free facet complex (hypergraph). These are facet complexes that do not contain any cycles of odd length. We show that besides one class of such facet complexes, all of them satisfy the K\"onig property. This new family of complexes includes the family of balanced hypergraphs, which are known to satisfy the K\"onig property. These facet complexes are, however, not Mengerian; we give an example to demonstrate this fact.Comment: 12 pages, 11 figure

    Hipergráfok = Hypergraphs

    Get PDF
    A projekt célkitűzéseit sikerült megvalósítani. A négy év során több mint száz kiváló eredmény született, amiből eddig 84 dolgozat jelent meg a téma legkiválóbb folyóirataiban, mint Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, stb. Számos régóta fennálló sejtést bebizonyítottunk, egész régi nyitott problémát megoldottunk hipergráfokkal kapcsolatban illetve kapcsolódó területeken. A problémák némelyike sok éve, olykor több évtizede nyitott volt. Nem egy közvetlen kutatási eredmény, de szintén bizonyos értékmérő, hogy a résztvevők egyike a Norvég Királyi Akadémia tagja lett és elnyerte a Steele díjat. | We managed to reach the goals of the project. We achieved more than one hundred excellent results, 84 of them appeared already in the most prestigious journals of the subject, like Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, etc. We proved several long standing conjectures, solved quite old open problems in the area of hypergraphs and related subjects. Some of the problems were open for many years, sometimes for decades. It is not a direct research result but kind of an evaluation too that a member of the team became a member of the Norvegian Royal Academy and won Steele Prize

    Decompositions of complete uniform hypergraphs into Hamilton Berge cycles

    Full text link
    In 1973 Bermond, Germa, Heydemann and Sotteau conjectured that if nn divides (nk)\binom{n}{k}, then the complete kk-uniform hypergraph on nn vertices has a decomposition into Hamilton Berge cycles. Here a Berge cycle consists of an alternating sequence v1,e1,v2,,vn,env_1,e_1,v_2,\dots,v_n,e_n of distinct vertices viv_i and distinct edges eie_i so that each eie_i contains viv_i and vi+1v_{i+1}. So the divisibility condition is clearly necessary. In this note, we prove that the conjecture holds whenever k4k \ge 4 and n30n \ge 30. Our argument is based on the Kruskal-Katona theorem. The case when k=3k=3 was already solved by Verrall, building on results of Bermond
    corecore