190 research outputs found

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Finding tight Hamilton cycles in random hypergraphs faster

    Full text link
    In an rr-uniform hypergraph on nn vertices a tight Hamilton cycle consists of nn edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of rr vertices. We provide a first deterministic polynomial time algorithm, which finds a.a.s. tight Hamilton cycles in random rr-uniform hypergraphs with edge probability at least Clog3n/nC \log^3n/n. Our result partially answers a question of Dudek and Frieze [Random Structures & Algorithms 42 (2013), 374-385] who proved that tight Hamilton cycles exists already for p=ω(1/n)p=\omega(1/n) for r=3r=3 and p=(e+o(1))/np=(e + o(1))/n for r4r\ge 4 using a second moment argument. Moreover our algorithm is superior to previous results of Allen, B\"ottcher, Kohayakawa and Person [Random Structures & Algorithms 46 (2015), 446-465] and Nenadov and \v{S}kori\'c [arXiv:1601.04034] in various ways: the algorithm of Allen et al. is a randomised polynomial time algorithm working for edge probabilities pn1+εp\ge n^{-1+\varepsilon}, while the algorithm of Nenadov and \v{S}kori\'c is a randomised quasipolynomial time algorithm working for edge probabilities pClog8n/np\ge C\log^8n/n.Comment: 17 page

    Linear trees in uniform hypergraphs

    Full text link
    Given a tree T on v vertices and an integer k exceeding one. One can define the k-expansion T^k as a k-uniform linear hypergraph by enlarging each edge with a new, distinct set of (k-2) vertices. Then T^k has v+ (v-1)(k-2) vertices. The aim of this paper is to show that using the delta-system method one can easily determine asymptotically the size of the largest T^k-free n-vertex hypergraph, i.e., the Turan number of T^k.Comment: Slightly revised, 14 pages, originally presented on Eurocomb 201
    corecore